1
|
Wang Z, Du Y, Li J, Zheng W, Gong B, Jin X, Zhou X, Yang H, Yang F, Guo J, Liu H, Wang M, Yan L, Zhu Y, Li X, Xu J, Wang J, Ma Z. Changes in health-promoting metabolites associated with high-altitude adaptation in honey. Food Chem 2024; 449:139246. [PMID: 38604035 DOI: 10.1016/j.foodchem.2024.139246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The levels of metabolites in honey are influenced by floral origin, production region, and bee species. However, how environmental factors affect honey quality remains unclear. Based on untargeted metabolomics and using UPLC Q-Orbitrap MS, we analyzed 3596 metabolites in 51 honey samples from Yunnan and Shennongjia. Comparative analysis revealed that geniposidic acid, kynurenic acid and caffieine accumulated at significantly different levels between Shennongjia and Yunnan honey. Based on cluster structure analysis, 36 Yunnan honey samples were divided into two distinct groups by altitude. Notably, quercetin, hyperoside, taxifolin, rutin, tryptophan, astragalin and phenylalanine were higher levels in high-altitude honey (>1700 m), whereas abscisic acid was higher levels in low-altitude honey (≤1700 m). Among these, significantly elevated levels of hyperoside, taxfolin, astragalin, and tryptophan were observed in honey collected from high-altitude areas in Shennongjia. Our findings highlight the effect of altitude on honey health-promoting components, providing valuable insights into honey quality.
Collapse
Affiliation(s)
- Ziyuan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxia Du
- Tropical and Subtropical Cash Crops Research Institute; Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Jingjing Li
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan 430064, China
| | - Weikang Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Gong
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan 430064, China
| | - Xiue Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan 430064, China
| | - Xianyan Zhou
- Tropical and Subtropical Cash Crops Research Institute; Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Hongxia Yang
- Tropical and Subtropical Cash Crops Research Institute; Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Fan Yang
- Tropical and Subtropical Cash Crops Research Institute; Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Jun Guo
- Tropical and Subtropical Cash Crops Research Institute; Yunnan Academy of Agricultural Sciences, Baoshan 678000, China
| | - Hangxiu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100010, China
| | - Meng Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahao Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Wang
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan 430064, China
| | - Zhaocheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
2
|
Physicochemical Profile, Antioxidant and Antimicrobial Activities of Honeys Produced in Minas Gerais (Brazil). Antibiotics (Basel) 2022; 11:antibiotics11101429. [PMID: 36290087 PMCID: PMC9598309 DOI: 10.3390/antibiotics11101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Honeys can be classified as polyfloral or monofloral and have been extensively studied due to an increased interest in their consumption. There is concern with the correct identification of their flowering, the use of analyses that guarantee their physicochemical quality and the quantification of some compounds such as phenolics, to determine their antioxidant and antimicrobial action. This study aims at botanical identification, physicochemical analyses, and the determination of total polyphenols, chromatographic profile and antiradical and antimicrobial activity of honey from different regions of Minas Gerais. Seven different samples were analyzed for the presence of pollen, and color determination. The physicochemical analyses performed were total acidity, moisture, HMF, reducing sugar, and apparent sucrose. The compound profile was determined by UHPLC/MS, the determination of total phenolics and antiradical activity (DPPH method) were performed by spectrophotometry, and minimum inhibitory and bacterial concentrations were determined for cariogenic bacteria. All honey samples met the quality standards required by international legislation, twenty compounds were detected as the main ones, the polyfloral honey was the only honey that inhibited all of the bacteria tested. Sample M6 (Coffee) was the one with the highest amount of total polyphenols, while the lowest was M4 (Cipó-uva). Regarding the antioxidant activity, M5 (Velame) had the best result and M4 (Cipó-uva) was the one that least inhibited oxidation. Of the polyfloral honeys, there was not as high a concentration of phenolic compounds as in the others. Coffee, Aroeira, Velame and Polyfloral have the best anti-radical actions. Betônica, Aroeira, Cipó-uva and Pequi inhibited only some bacteria. The best bacterial inhibition results are from Polyfloral.
Collapse
|