1
|
Shi Y, Yin L, Hao Y, Wang J, Zhou W. KIF2A correlates with lymphovascular invasion and higher tumor stage, and can be used to predict worse prognosis in patients with endometrial carcinoma. Oncol Lett 2024; 28:396. [PMID: 38974111 PMCID: PMC11224796 DOI: 10.3892/ol.2024.14529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/03/2024] [Indexed: 07/09/2024] Open
Abstract
Kinesin family protein 2A (KIF2A) is a microtubule depolymerase that participates in the progression of various cancers; however, its clinical utility in endometrial carcinoma (EC) remains unclear. The aim of the present study was to assess KIF2A expression and its relationship with prognosis in patients with EC. Data from 230 patients with EC who underwent tumor resection were reviewed in the current, retrospective study. KIF2A expression was measured in 230 formalin-fixed paraffin-embedded (FFPE) specimens of tumor tissue and 50 FFPE specimens of non-tumor tissue using immunohistochemistry (IHC). KIF2A expression was elevated in EC tumor tissue vs. non-tumor tissue (P<0.001). Furthermore, tumor KIF2A expression was linked with lymphovascular invasion (P=0.004) and higher International Federation of Gynecology and Obstetrics (FIGO) stage (P=0.001). High tumor KIF2A expression (IHC score>3) was correlated with shorter disease-free survival (DFS; P=0.014) and overall survival (OS; P=0.012). Moreover, the time-dependent receiver operating characteristic curves revealed that tumor KIF2A expression had an acceptable use for estimating the relapse and death risks at each timepoint within 6 years, with each area under the curve remaining stable at ≥0.7. Notably, tumor KIF2A expression (high vs. low) independently forecast shorter DFS (hazard ratio, 2.506; P=0.013), but not OS (P>0.05). Furthermore, information from The Human Protein Atlas database indicated that high tumor KIF2A expression was associated with worse OS in patients with EC (P=0.027). Tumor KIF2A is not only associated with lymphovascular invasion and higher FIGO stage, but also reflects unfavorable survival in patients with EC.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Gynaecology, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| | - Liyang Yin
- Department of General Surgery, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| | - Yajing Hao
- Department of Emergency Surgery, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| | - Jurong Wang
- Department of Gynaecology, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| | - Weiyue Zhou
- Department of Gynaecology, Handan Central Hospital, Handan, Hebei 056000, P.R. China
| |
Collapse
|
2
|
Lai SM, Zhu HH, Gan ZJ, Zheng BY, Xu ZH, Wang ZC, Liao XF. Sex difference in alcohol consumption associated with colorectal cancer risk in Quzhou, China: A nested case-control study. Prev Med Rep 2024; 44:102807. [PMID: 39055640 PMCID: PMC11269775 DOI: 10.1016/j.pmedr.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Objective Colorectal cancer (CRC) incidence has been increasing worldwide over time. This study investigated whether drinking was associated with CRC risk. Methods We designed a case-control study nested in a mass CRC screening program in Quzhou, China. Cases were newly diagnosed CRC in 2020-2022. Controls were randomly sampled using frequency match. Drinking variables included drinking status, frequency, duration, and others. Logistic regressions were used to estimate odds ratio (OR) and 95 % confidence interval (CI). Results The crude OR (cOR) (95 % CI) of drinking between 153 cases and 650 controls was 1.46 (0.99, 2.16) in current drinkers, 3.31 (1.44, 7.60) in former drinkers, 1.82 (1.21, 2.74) in drinking 6-7 days/week, and 3.48 (1.29, 9.37) in drinking 1-19 years. Stratifying by sex, all drinking variables in women but not all in men were consistently associated with CRC risk. The adjusted OR (aOR) (95 % CI) was 1.01 (0.59, 1.74) in current drinking men, 2.27 (0.78, 6.64) in former drinking men, and 4.24 (1.61, 11.13) in current drinking women. The aOR (95 % CI) of drinking whisky was 0.19 (0.04, 0.83), 1.89 (0.86, 4.17), 2.25 (1.05, 4.83), and 1.82 (0.85, 3.92) in men drinking ≤0.5, >0.5-≤1.0, >1.0-≤1.5, and >1.5 Liter/week (P trend = 0.011), and 3.80 (1.03, 14.00) and 9.92 (2.01, 49.00) in women drinking ≤0.5 and >0.5 Liter/week (P trend = 0.001), respectively. Conclusions There was sex difference in drinking associated with increased risk of CRC which association was stronger in women than that in men. Men's association between drinking whisky and CRC risk was J-shaped.
Collapse
Affiliation(s)
- Shi-Ming Lai
- Quzhou City Center for Disease Control and Prevention, Quzhou City, Zhejiang Province 324000, PR China
| | - Hong-Hong Zhu
- Zhejiang Chinese Medical University Affiliated Four-Province-Bordering Hospital of Traditional Chinese Medicine (Quzhou Hospital of Traditional Chinese Medicine), 117 Quhua Road, Quzhou City, Zhejiang Province 324000, PR China
| | - Zhi-Juan Gan
- Quzhou City Center for Disease Control and Prevention, Quzhou City, Zhejiang Province 324000, PR China
| | - Bi-Yun Zheng
- Quzhou City Center for Disease Control and Prevention, Quzhou City, Zhejiang Province 324000, PR China
| | - Zhao-Hui Xu
- Zhejiang Chinese Medical University Affiliated Four-Province-Bordering Hospital of Traditional Chinese Medicine (Quzhou Hospital of Traditional Chinese Medicine), 117 Quhua Road, Quzhou City, Zhejiang Province 324000, PR China
| | - Zhi-Cheng Wang
- Zhejiang Chinese Medical University Affiliated Four-Province-Bordering Hospital of Traditional Chinese Medicine (Quzhou Hospital of Traditional Chinese Medicine), 117 Quhua Road, Quzhou City, Zhejiang Province 324000, PR China
| | - Xiao-Fang Liao
- Zhejiang Chinese Medical University Affiliated Four-Province-Bordering Hospital of Traditional Chinese Medicine (Quzhou Hospital of Traditional Chinese Medicine), 117 Quhua Road, Quzhou City, Zhejiang Province 324000, PR China
| |
Collapse
|
3
|
Xie X, Sun T, Pan H, Ji D, Xu Z, Gao G, Miao J, Wang L, Zhang Y, Liu J, Ling Y, Su X. Development of Novel β-Carboline/Furylmalononitrile Hybrids as Type I/II Photosensitizers with Chemo-Photodynamic Therapy and Minimal Toxicity. Mol Pharm 2024; 21:3553-3565. [PMID: 38816926 DOI: 10.1021/acs.molpharmaceut.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chemo-photodynamic therapy is a treatment method that combines chemotherapy and photodynamic therapy and has demonstrated significant potential in cancer treatment. However, the development of chemo-photodynamic therapeutic agents with fewer side effects still poses a challenge. Herein, we designed and synthesized a novel series of β-carboline/furylmalononitrile hybrids 10a-i and evaluated their chemo-photodynamic therapeutic effects. Most of the compounds were photodynamically active and exhibited cytotoxic effects in four cancer cells. In particular, 10f possessed type-I/II photodynamic characteristics, and its 1O2 quantum yield increased by 3-fold from pH 7.4 to 4.5. Most interestingly, 10f exhibited robust antiproliferative effects by tumor-selective cytotoxicities and hypoxic-overcoming phototoxicities. In addition, 10f generated intracellular ROS and induced hepatocellular apoptosis, mitochondrial damage, and autophagy. Finally, 10f demonstrated extremely low acute toxicity (LD50 = 1415 mg/kg) and a high tumor-inhibitory rate of 80.5% through chemo-photodynamic dual therapy. Our findings may provide a promising framework for the design of new photosensitizers for chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Xudong Xie
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Tiantian Sun
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Heyu Pan
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Dongliang Ji
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ge Gao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Jiefei Miao
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Lei Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Ji Liu
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Yong Ling
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| | - Xing Su
- Department of Pharmacy, Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong 226001, China
| |
Collapse
|
4
|
Li J, Song X, Ni Y, Zhu S, Chen W, Zhao Y, Yi J, Xia L, Nie S, Shang Q, Liu L. Time trends of 16 modifiable risk factors on the burden of major cancers among the Chinese population. Int J Cancer 2024; 154:1443-1454. [PMID: 38126210 DOI: 10.1002/ijc.34824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The cancer burden in China is increasing. We aimed to assess the time trends in the prevalence of 16 modifiable risk factors involved in lifestyle, diet, infection, and air pollution between 1997 and 2025 based on the China Health and Nutrition Survey, the Global Burden of Disease website, and publically available studies. The population attributable fraction (PAF) and its 95% uncertainty interval (UI) from 2007 to 2035 were calculated to quantify the attributable cancer burden in major 12 anatomic sites using the comparative risk assessment method, considering a 10-year lag effect. As a result, 1,559,476 cancer cases (PAF = 54.1%, 95% UI: 36.8%-65.8%) from the 12 anatomic sites were attributable to these modifiable risk factors in 2007, with lung, liver, and gastric cancer raging the top three. It was predicted that by 2035, the attributable cancer cases would reach 1,680,098 (PAF = 44.2%, 95% UI: 29.1%-55.5%), with the top three of lung, liver, and colorectal cancer. Smoking, physical inactivity, insufficient fruit consumption, HBV infection, and Helicobacter pylori infection were the most attributable risk factors in 2007, contributing to 480,352, 233,684, 215,009, 214,455, and 187,305 associated cancer cases, respectively. In 2035, the leading factors for cancer would be smoking, physical inactivity, insufficient fruit intake, HPV infection, and HBV infection, resulting in 427,445, 424,327, 185,144, 156,535, and 154,368 cancer cases, respectively. Intervention strategies should be swiftly established and dynamically altered in response to risk factors like smoking, physical inactivity, poor fruit intake, and infectious factors that may cause a high cancer burden in the Chinese population.
Collapse
Affiliation(s)
- Jia Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuemei Song
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxin Ni
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sijia Zhu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiyi Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Zhao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yi
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaofa Nie
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinggang Shang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Li Liu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Colorectal Cancer, Wuhan, Hubei, China
- Wuhan Clinical Research Center for Colorectal cancer, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhang P, Zhang L, Xu K, Lin Y, Ma R, Zhang M, Li X. Evaluating the impact of PD-1 inhibitor treatment on key health outcomes for cancer patients in China. Int J Clin Pharm 2024; 46:429-438. [PMID: 38165516 DOI: 10.1007/s11096-023-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND There is a lack of studies examining the influence of programmed cell death protein 1 (PD-1) inhibitors on the health outcomes of cancer patients in China. AIM This study aimed to evaluate prospective health outcomes associated with introducing PD-1 inhibitor treatment in China over five years. METHOD We constructed a partitioned survival model to assess disparities in health outcomes over a 5-year time frame between two scenarios: one involving the availability of PD-1 inhibitor class with standard of care and the other involving standard of care alone. The impact on various health outcomes were assessed, including life years (LYs) gained, quality-adjusted life years (QALYs) gained, progression-free survival (PFS) years gained, the reduction in the number of grade 3-5 adverse events (AEs), and the improvement in objective remission rates (ORR). A sensitivity analysis was conducted to assess the robustness and reliability of the model. RESULTS From 2023 to 2027, the incorporation of PD-1 inhibitor class treatments was anticipated to yield substantial improvements in health outcomes, with an estimated increase of 1,336,332 LYs (+ 24.7%), 1,065,359 QALYs (+ 30.3%), and 1,177,564 PFS years (+ 57.4%) compared to standard of care alone. Simultaneously, the number of grade 3-5 AEs decreased by 334,976 (- 13.0%), and the ORR saw a 19.1% increase (+ 105.6%) relative to standard of care treatment alone. CONCLUSION This study provides a analysis of the potential beneficial effects on health outcomes in the Chinese population after introducing PD-1 inhibitor class treatment. The findings suggest the PD-1 inhibitor class will significantly improve patient survival.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Lingli Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Xu
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yingtao Lin
- Department of Drug Clinical Trial Institution, Fujian Cancer Hospital, Fuzhou, 350014, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Rui Ma
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Mengdie Zhang
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Li
- Department of Pharmaceutical Regulatory Science and Pharmacoeconomics, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
7
|
Liu G, Li CM, Xie F, Li QL, Liao LY, Jiang WJ, Li XP, Lu GM. Colorectal cancer's burden attributable to a diet high in processed meat in the Belt and Road Initiative countries. World J Gastrointest Oncol 2024; 16:182-196. [PMID: 38292848 PMCID: PMC10824120 DOI: 10.4251/wjgo.v16.i1.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) plays a significant role in morbidity, mortality, and economic cost in the Belt and Road Initiative ("B and R") countries. In addition, these countries have a substantial consumption of processed meat. However, the burden and trend of CRC in relation to the consumption of a diet high in processed meat (DHPM-CRC) in these "B and R" countries remain unknown. AIM To analyze the burden and trend of DHPM-CRC in the "B and R" countries from 1990 to 2019. METHODS We used the 2019 Global Burden of Disease Study to collate information regarding the burden of DHPM-CRC. Numbers and age-standardized rates (ASRs) of deaths along with the disability-adjusted life years (DALYs) were determined among the "B and R" countries in 1990 and 2019. Using joinpoint regression analysis, the average annual percent change (AAPC) was used to analyze the temporal trends of age-standardized DALYs rate (ASDALR) from 1990 to 2019 and in the final decade (2010-2019). RESULTS We found geographical differences in the burden of DHPM-CRC among "B and R" countries, with the three highest-ranking countries being the Russian Federation, China, and Ukraine in 1990, and China, the Russian Federation, and Poland in 2019. The burden of DHPM-CRC generally increased in most member countries from 1990 to 2019 (all P < 0.05). The absolute number of deaths and DALYs in DHPM-CRC were 3151.15 [95% uncertainty interval (UI) 665.74-5696.64] and 83249.31 (95%UI 15628.64-151956.31) in China in 2019. However, the number of deaths (2627.57-2528.51) and DALYs (65867.39-55378.65) for DHPM-CRC in the Russian Federation has declined. The fastest increase in ASDALR for DHPM-CRC was observed in Vietnam, Southeast Asia, with an AAPC value of 3.90% [95% confidence interval (CI): 3.63%-4.16%], whereas the fastest decline was observed in Kyrgyzstan, Central Asia, with an AAPC value of -2.05% (95% CI: -2.37% to -1.73%). A substantial upward trend in ASR of mortality, years lived with disability, years of life lost, and DALYs from DHPM-CRC changes in 1990-2019 and the final decade (2010-2019) for most Maritime Silk Route members in East Asia, South Asia, Southeast Asia, North Africa, and the Middle East, as well as Central Europe, while those of the most Land Silk Route members in Central Asia and Eastern Europe have decreased markedly (all P < 0.05). The ASDALR for DHPM-CRC increased more in males than in females (all P < 0.05). For those aged 50-74 years, the ASDALR for DHPM-CRC in 40 members exhibited an increasing trend, except for 20 members, including 7 members in Central Asia, Maldives, and 12 high or high-middle social development index (SDI) members in other regions (all P < 0.05). CONCLUSION The burden of DHPM-CRC varies substantially across "B and R" countries and threatens public health. Relevant evidence-based policies and interventions tailored to the different trends of countries in SDIs or Silk Routes should be adopted to reduce the future burden of CRC in "B and R" countries via extensive collaboration.
Collapse
Affiliation(s)
- Gu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong Province, China
- Department of Gastrointestinal Surgery, Chenzhou Third People’s Hospital, Chenzhou 423000, Hunan Province, China
| | - Chang-Min Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong Province, China
- Department of Gastrointestinal Surgery, Chenzhou First People’s Hospital and the First Affiliated Hospital of Xiangnan University, Chenzhou, 423000 Hunan Province, China
| | - Fei Xie
- Department of Gastrointestinal Surgery, Chenzhou Third People’s Hospital, Chenzhou 423000, Hunan Province, China
| | - Qi-Lai Li
- Department of Gastrointestinal Surgery, Chenzhou Third People’s Hospital, Chenzhou 423000, Hunan Province, China
| | - Liang-Yan Liao
- Department of Breast and Thyroid Surgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Wen-Jun Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Pan Li
- Department of Health Management Center, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Guan-Ming Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong Province, China
- Department of Breast and Thyroid Surgery, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
8
|
Gan H, Xiang H, Xi Y, Yao M, Shao C, Shao S. Effect of long non-coding RNA 114227 on gastric cancer cell proliferation and migration. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:157-164. [PMID: 36999461 PMCID: PMC10930341 DOI: 10.11817/j.issn.1672-7347.2023.220435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 04/01/2023]
Abstract
OBJECTIVES Gastric cancer is a common cancer of the digestive system. Long non-coding RNA (lncRNA) plays an important role in the formation and development of gastric cancer. This study aims to investigate the effect of long non-coding lncRNA 114227 on biologic behaviors in gastric cancer cells. METHODS The experiment was divided into 4 groups: a negative control (NC) group, a lncRNA 114227 small interference (si-lncRNA 114227) group, an empty vector (Vector) group, and an overexpression vector (OE-lncRNA 114227) group. The expressions of lncRNA 114227 in gastric mucosa and gastric cancer tissues, gastric mucosal epithelial cells and different gastric cancer strains were determined by real-time reverse transcription PCR (real-time RT-PCR).The proliferation were detected by CCK-8 assay in gastric cancer cells. The epithelial-mesenchymal transformation (EMT) was utilized by Transwell assay, scratch healing assay, and Western blotting in gastric cancer cells. The effect of lncRNA 114227 on proliferation of gastric cancer cells was detected by tumor bearing experiment in nude mice in vivo. RESULTS The expression level of lncRNA 114227 in the gastric cancer tissues was significantly lower than that in the gastric mucosa tissues, and in 4 kinds of gastric cancer strains was all significantly lower than that in gastric mucosal epithelial cells (all P<0.01). In vitro, the proliferation and migration abilities of gastric cells were significantly reduced after overexpressing lncRNA 114227, and cell proliferation and migration were enhanced after silencing lncRNA 114227 (all P<0.05). The results of in vivo subcutaneous tumorigenesis in nude mice showed that the tumorigenic volume of the tumor-bearing mice in the OE-lncRNA 114227 group was significantly smaller than that of the Vector group, and the tumorigenic quality was lower than that of the Vector group (P<0.05), indicating that lncRNA 114227 inhibited tumorigenesis. CONCLUSIONS The expression of lncRNA 114227 is downregulated in gastric cancer gastric cancer tissues and cell lines. LncRNA 114227 may inhibit the proliferation and migration of gastric cancer cells through EMT process.
Collapse
Affiliation(s)
- Haining Gan
- School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212000.
| | - Huiying Xiang
- School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212000
| | - Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212000
| | - Min Yao
- School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212000
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang Jiangsu 212000, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang Jiangsu 212000.
| |
Collapse
|
9
|
Li Q, Wu H, Cao M, Li H, He S, Yang F, Yan X, Zhang S, Teng Y, Xia C, Peng J, Chen W. Colorectal cancer burden, trends and risk factors in China: A review and comparison with the United States. Chin J Cancer Res 2022; 34:483-495. [PMID: 36398126 PMCID: PMC9646460 DOI: 10.21147/j.issn.1000-9604.2022.05.08] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 08/02/2023] Open
Abstract
Objective China and the United States (the U.S.) have the heaviest colorectal cancer (CRC) burden with considerable variations in temporal trends. This study aims to analyze the temporal patterns of CRC burden and its risk factors in China and the U.S. across the past three decades. Methods Data were extracted from the Global Burden of Disease (GBD) Study in 2019, including cases, deaths, disability-adjusted life-years (DALYs), age-standardized rate (ASR), and summary exposure value (SEV) of CRC in China and the U.S. between 1990 and 2019. Annual average percentage changes (AAPCs) of CRC burden were calculated using the Joinpoint regression model. The mortality in CRC attributable to potential risk factors was characterized by countries, gender, and age groups. Results In 2019, there were 607,900 and 227,241 CRC cases, and 261,777 and 84,026 CRC deaths in China and the U.S., respectively. The age-standardized incidence rate (ASIR) was 30.55 per 100,000 in China and 41.86 per 100,000 in the U.S., and the age-standardized mortality rate (ASMR) was 13.86 per 100,000 in China and 14.77 per 100,000 in the U.S. CRC incidence, mortality, and DALY rate in the U.S. showed downward trends in the past three decades (AAPC=-0.47, -1.06, and -0.88, respectively), while upward trends were observed in China (AAPC=3.11, 1.05, and 0.91, respectively). Among the cause of CRC, the leading risk factor contributing to CRC death was low milk in China and smoking in the U.S., respectively. Conclusions From 1990 to 2019, the burden of CRC in China increased dramatically, particularly for males and middle-aged and elderly people. The management of the major risk factors associated with the high burden of CRC should be enhanced.
Collapse
Affiliation(s)
- Qianru Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Hongliang Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Maomao Cao
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - He Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Siyi He
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Fan Yang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Xinxin Yan
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Shaoli Zhang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Yi Teng
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Changfa Xia
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| | - Ji Peng
- Department of Cancer Prevention and Control, Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Beijing 100021, China
| |
Collapse
|
10
|
Hu HT, Zhao XH, Guo CY, Yao QJ, Geng X, Zhu WB, Li HL, Fan WJ, Li HL. Local ablation of pulmonary malignancies abutting pleura: Evaluation of midterm local efficacy and safety. Front Oncol 2022; 12:976777. [PMID: 36081556 PMCID: PMC9446881 DOI: 10.3389/fonc.2022.976777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo retrospectively evaluate the efficacy and safety of local ablation treatment for adjacent pleural lung tumors.Materials and methodsSixty-two patients who underwent pulmonary nodule ablation at the Affiliated Cancer Hospital of Zhengzhou University were enrolled between January 2016 and December 2020. All patients were followed up with enhanced computed tomography or magnetic resonance imaging within 48 h after treatment and 2, 4, 6, 9, and 12 months after treatment. All patients were followed for at least 12 months.ResultsA total of 84 targeted tumors (62 patients) underwent 94 ablations. In the 12-month follow-up images, 69 of the 84 targeted tumors were completely ablated, 15 had incomplete ablation, and the 12-month incomplete ablation rate was 17.8% (15/84). Of the 15 incompletely ablated tumors, six had partial responses, five had stable disease, and four had progressive disease. The most common adverse event was pneumothorax, with an incidence of 54.8% (34/62). The second most common complication was pleural effusion, with an incidence rate of 41.9% (26/62). The incidence of needle-tract bleeding was 21% (13/62) and all patients were cured using hemostatic drugs. Serious complications were bronchopleural fistula in four patients (6.5%, 4/62) and needle tract metastasis in one patient. Four cases of bronchopleural fistula were found in the early stages and were cured after symptomatic treatment.ConclusionLocal ablation is effective for the treatment of adjacent pleural lung tumors, and its operation is safe and controllable.
Collapse
Affiliation(s)
- Hong-Tao Hu
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiao-Hui Zhao
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Chen-Yang Guo
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quan-Jun Yao
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiang Geng
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wen-Bo Zhu
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hong-Le Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wei-Jun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hai-Liang Li
- Department of Minimal-Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Hai-Liang Li,
| |
Collapse
|
11
|
Cai M, Ni WJ, Wang YH, Wang JJ, Zhou H. Targeting TMEM88 as an Attractive Therapeutic Strategy in Malignant Tumors. Front Oncol 2022; 12:906372. [PMID: 35734592 PMCID: PMC9207468 DOI: 10.3389/fonc.2022.906372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022] Open
Abstract
According to authoritative surveys, the overall morbidity and mortality of malignant tumors show an upward trend, and it is predicted that this trend will not be well contained in the upcoming new period. Since the influencing factors, pathogenesis, and progression characteristics of malignant tumors have not been fully elucidated, the existing treatment strategies, mainly including surgical resection, ablation therapy and chemotherapy, cannot achieve satisfactory results. Therefore, exploring potential therapeutic targets and clarifying their functions and mechanisms in continuous research and practice will provide new ideas and possibilities for the treatment of malignant tumors. Recently, a double-transmembrane protein named transmembrane protein 88 (TMEM88) was reported to regulate changes in downstream effectors by mediating different signaling pathways and was confirmed to be widely involved in cell proliferation, differentiation, apoptosis and tumor progression. At present, abnormal changes in TMEM88 have been found in breast cancer, ovarian cancer, lung cancer, thyroid cancer and other malignant tumors, which has also attracted the attention of tumor research and attempted to clarify its function and mechanism. However, due to the lack of systematic generalization, comprehensive and detailed research results have not been comprehensively summarized. In view of this, this article will describe in detail the changes in TMEM88 in the occurrence and development of malignant tumors, comprehensively summarize the corresponding molecular mechanisms, and explore the potential of targeting TMEM88 in the treatment of malignant tumors to provide valuable candidate targets and promising intervention strategies for the diagnosis and cure of malignant tumors.
Collapse
Affiliation(s)
- Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying-Hong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing-Ji Wang
- Anhui Acupuncture and Moxibustion Clinical Medicine Research Center, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|