1
|
Leng F, Liu J, Du E, Lei S, Xie C, Jiang X, Li TF. Recent progress in polysaccharide microsphere-based hemostatic material for intravascular and extravascular hemostasis: A review. Int J Biol Macromol 2025; 300:140280. [PMID: 39870271 DOI: 10.1016/j.ijbiomac.2025.140280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Hemorrhage, a common consequence of diseases, surgical procedures, and traffic accidents, poses a significant threat to public health. Effective hemostasis is crucial for patient survival and prognosis, particular in case of internal bleeding. While polysaccharide microsphere-based hemostatic materials have gained clinical acceptance due to their effectiveness, good biocompatibility, and versatility in both intravascular and extravascular hemostasis, they are limited by their single function and insufficient hemostatic properties. Recently, booming developments have been witnessed in microsphere-based biomaterials to achieve a combination therapy for hemostasis. This review first examines the fundamentals of coagulation process, hemostatic mechanisms, and microsphere fabrication techniques. We then discuss the latest investigations in functionalized microsphere-based hemostatic materials for controlling intravascular and extravascular hemorrhage, focusing on design strategies, hemostatic properties, and clinical implementation. Finally, we also propose some limitations and challenges of these hemostatic materials, aiming to provide valuable insights for future research in novel polysaccharide microsphere-based biomaterial.
Collapse
Affiliation(s)
- Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Jie Liu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Enfu Du
- Medical Imaging Center, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Sai Lei
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Cong Xie
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | - Tong-Fei Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
2
|
Zhang Y, Han X, Zhao J, Gan M, Chen Y, Zhang J, He Y, Wu M, Liu H. Process optimization and character evaluation of Bletilla striata polysaccharide (BSP) and chitosan (CS) composite hemostatic sponge (BSP-CS). Biointerphases 2024; 19:021002. [PMID: 38526056 DOI: 10.1116/6.0003369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.
Collapse
Affiliation(s)
- Yeshan Zhang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xue Han
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jun Zhao
- Guizhou Tongde Pharmaceutical Co., Ltd., Tongren 554300, Guizhou Province, China
| | - Menglan Gan
- Guizhou Vocational College of Agriculture, Guiyang 551400, Guizhou Province, China
| | - Yaya Chen
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jinxia Zhang
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yu He
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Mingkai Wu
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Hai Liu
- Institute of Modern Chinese Herbal Medicine/Guizhou Institute of Crop Variety Resources, Guizhou Engineering Research Center for the Cultivation and Planting of Chinese Medicine Bletilla striata, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|