1
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial responses and alters cellular signaling in an Alzheimer's disease mouse model. Nat Commun 2024; 15:7028. [PMID: 39147742 PMCID: PMC11327341 DOI: 10.1038/s41467-024-51163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. The complement pathway has been proposed as a therapeutic target. C5aR1 inhibition reduces plaque load, gliosis, and memory deficits in animal models, however, the cellular bases underlying this neuroprotection were unclear. Here, we show that the C5aR1 antagonist PMX205 improves outcomes in the Arctic48 mouse model of AD. A combination of single cell and single nucleus RNA-seq analysis of hippocampi derived from males and females identified neurotoxic disease-associated microglia clusters in Arctic mice that are C5aR1-dependent, while microglial genes associated with synapse organization and transmission and learning were overrepresented in PMX205-treated mice. PMX205 also reduced neurotoxic astrocyte gene expression, but clusters associated with protective responses to injury were unchanged. C5aR1 inhibition promoted mRNA-predicted signaling pathways between brain cell types associated with cell growth and repair, while suppressing inflammatory pathways. Finally, although hippocampal plaque load was unaffected, PMX205 prevented deficits in short-term memory in female Arctic mice. In conclusion, C5aR1 inhibition prevents cognitive loss, limits detrimental glial polarization while permitting neuroprotective responses, as well as leaving most protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Nicole D Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Heidi Y Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.
| |
Collapse
|
2
|
Song J, Li M, Chen C, Zhou J, Wang L, Yan Y, She J, Tong L, Song Y. Regulator of G protein signaling protein 6 alleviates acute lung injury by inhibiting inflammation and promoting cell self-renewal in mice. Cell Mol Biol Lett 2023; 28:102. [PMID: 38066447 PMCID: PMC10709870 DOI: 10.1186/s11658-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a disease with high mortality and morbidity. Regulator of G protein signaling protein 6 (RGS6), identified as a tumor suppressor gene, has received increasing attention owing to its close relationship with oxidative stress and inflammation. However, the association between ARDS and RGS6 has not been reported. METHODS Congruously regulated G protein-coupled receptor (GPCR)-related genes and differentially expressed genes (DEGs) in an acute lung injury (ALI) model were identified, and functional enrichment analysis was conducted. In an in vivo study, the effects of RGS6 knockout were studied in a mouse model of ALI induced by lipopolysaccharide (LPS). HE staining, ELISA, and immunohistochemistry were used to evaluate pathological changes and the degree of inflammation. In vitro, qRT‒PCR, immunofluorescence staining, and western blotting were used to determine the dynamic changes in RGS6 expression in cells. The RGS6 overexpression plasmid was constructed for transfection. qRT‒PCR was used to assess proinflammatory factors transcription. Western blotting and flow cytometry were used to evaluate apoptosis and reactive oxygen species (ROS) production. Organoid culture was used to assess the stemness and self-renewal capacity of alveolar epithelial type II cells (AEC2s). RESULTS A total of 110 congruously regulated genes (61 congruously upregulated and 49 congruously downregulated genes) were identified among GPCR-related genes and DEGs in the ALI model. RGS6 was downregulated in vivo and in vitro in the ALI model. RGS6 was expressed in the cytoplasm and accumulated in the nucleus after LPS stimulation. Compared with the control group, we found higher mortality, more pronounced body weight changes, more serious pulmonary edema and pathological damage, and more neutrophil infiltration in the RGS6 knockout group upon LPS stimulation in vivo. Moreover, AEC2s loss was significantly increased upon RGS6 knockout. Organoid culture assays showed slower alveolar organoid formation, fewer alveolar organoids, and impaired development of new structures after passaging upon RGS6 knockout. In addition, RGS6 overexpression decreased ROS production as well as proinflammatory factor transcription in macrophages and decreased apoptosis in epithelial cells. CONCLUSIONS RGS6 plays a protective role in ALI not only in early inflammatory responses but also in endogenous lung stem cell regeneration.
Collapse
Affiliation(s)
- Juan Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Miao Li
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Cuicui Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Jian Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Linlin Wang
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Yu Yan
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Respiratory Research Institute, Shanghai, 200032, China
| | - Jun She
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| | - Lin Tong
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, 361000, China.
- Shanghai Respiratory Research Institute, Shanghai, 200032, China.
| |
Collapse
|
3
|
Tan Y, He Q, Chan KHK. Identification of shared genetic architecture between non-alcoholic fatty liver disease and type 2 diabetes: A genome-wide analysis. Front Endocrinol (Lausanne) 2023; 14:1050049. [PMID: 37033223 PMCID: PMC10073682 DOI: 10.3389/fendo.2023.1050049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The incidence of complications of non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) has been increasing. METHOD In order to identify the shared genetic architecture of the two disease phenotypes of NAFLD and T2D, a European population-based GWAS summary and a cross-trait meta-analysis was used to identify significant shared genes for NAFLD and T2D. The enrichment of shared genes was then determined through the use of functional enrichment analysis to investigate the relationship between genes and phenotypes. Additionally, differential gene expression analysis was performed, significant differentially expressed genes in NAFLD and T2D were identified, genes that overlapped between those that were differentially expressed and cross-trait results were reported, and enrichment analysis was performed on the core genes that had been obtained in this way. Finally, the application of a bidirectional Mendelian randomization (MR) approach determined the causal link between NAFLD and T2D. RESULT A total of 115 genes were discovered to be shared between NAFLD and T2D in the GWAS analysis. The enrichment analysis of these genes showed that some were involved in the processes such as the decomposition and metabolism of lipids, phospholipids, and glycerophospholipids. Additionally, through the use of differential gene expression analysis, 15 core genes were confirmed to be linked to both T2D and NAFLD. They were correlated with carcinoma cells and inflammation. Furthermore, the bidirectional MR identified a positive causal relationship between NAFLD and T2D. CONCLUSION Our study determined the genetic structure shared between NAFLD and T2D, offering a new reference for the genetic pathogenesis and mechanism of NAFLD and T2D comorbidities.
Collapse
Affiliation(s)
- Yajing Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Kei Hang Katie Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Center for Global Cardiometabolic Health, Brown University, Providence, RI, United States
- *Correspondence: Kei Hang Katie Chan,
| |
Collapse
|