1
|
Chen S, Ran J, Fan Z, Liu M, Wu L, Li Q, Peng J, Hu Z. Functional status analysis of RNH1 in bladder cancer for predicting immunotherapy response. Sci Rep 2023; 13:12625. [PMID: 37537337 PMCID: PMC10400633 DOI: 10.1038/s41598-023-39827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Bladder cancer (BLCA) typically has a poor prognosis due to high rates of relapse and metastasis. Although the emergence of immunotherapy brings hope for patients with BLCA, not all patients will benefit from it. Identifying some markers to predict treatment response is particularly important. Here, we aimed to determine the clinical value of the ribonuclease/angiogenin inhibitor 1 (RNH1) in BLCA therapy based on functional status analysis. First, we found that RNH1 is aberrantly expressed in multiple cancers but is associated with prognosis in only a few types of cancer. Next, we determined that low RNH1 expression was significantly associated with enhanced invasion and metastasis of BLCA by assessing the relationship between RNH1 and 17 functional states. Moreover, we identified 95 hub genes associated with invasion and metastasis among RNH1-related genes. Enrichment analysis revealed that these hub genes were also significantly linked with immune activation. Consistently, BLCA can be divided into two molecular subtypes based on these hub genes, and the differentially expressed genes between the two subtypes are also significantly enriched in immune-related pathways. This indicates that the expression of RNH1 is also related to the tumour immune response. Subsequently, we confirmed that RNH1 shapes an inflammatory tumour microenvironment (TME), promotes activation of the immune response cycle steps, and has the potential to predict the immune checkpoint blockade (ICB) treatment response. Finally, we demonstrated that high RNH1 expression was significantly associated with multiple therapeutic signalling pathways and drug targets in BLCA. In conclusion, our study revealed that RNH1 could provide new insights into the invasion of BLCA and predict the immunotherapy response in patients with BLCA.
Collapse
Affiliation(s)
- Sen Chen
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Jun Ran
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Zhouqian Fan
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Mingyou Liu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Liang Wu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China
| | - Qiude Li
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China.
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China.
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center in University of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, 550025, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|