1
|
Hong WL, Huang H, Zeng X, Duan CY. Targeting mitochondrial quality control: new therapeutic strategies for major diseases. Mil Med Res 2024; 11:59. [PMID: 39164792 PMCID: PMC11337860 DOI: 10.1186/s40779-024-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Mitochondria play a crucial role in maintaining the normal physiological state of cells. Hence, ensuring mitochondrial quality control is imperative for the prevention and treatment of numerous diseases. Previous reviews on this topic have however been inconsistencies and lack of systematic organization. Therefore, this review aims to provide a comprehensive and systematic overview of mitochondrial quality control and explore the possibility of targeting the same for the treatment of major diseases. This review systematically summarizes three fundamental characteristics of mitochondrial quality control, including mitochondrial morphology and dynamics, function and metabolism, and protein expression and regulation. It also extensively examines how imbalances in mitochondrial quality are linked to major diseases, such as ischemia-hypoxia, inflammatory disorders, viral infections, metabolic dysregulations, degenerative conditions, and tumors. Additionally, the review explores innovative approaches to target mitochondrial quality control, including using small molecule drugs that regulate critical steps in maintaining mitochondrial quality, nanomolecular materials designed for precise targeting of mitochondria, and novel cellular therapies, such as vesicle therapy and mitochondrial transplantation. This review offers a novel perspective on comprehending the shared mechanisms underlying the occurrence and progression of major diseases and provides theoretical support and practical guidance for the clinical implementation of innovative therapeutic strategies that target mitochondrial quality control for treating major diseases.
Collapse
Affiliation(s)
- Wei-Long Hong
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Zeng
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chen-Yang Duan
- Department of Anesthesiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
2
|
Wang Z, Zhu J, Zhang D, Lv J, Wu L, Liu Z. The significant mechanism and treatments of cell death in heatstroke. Apoptosis 2024; 29:967-980. [PMID: 38886312 DOI: 10.1007/s10495-024-01979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
With global warming, extreme environmental heat is becoming a social issue of concern, which can cause adverse health results including heatstroke (HS). Severe heat stress is characterized by cell death of direct heat damage, excessive inflammatory responses, and coagulation disorders that can lead to multiple organ dysfunction (MODS) and even death. However, the significant pathophysiological mechanism and treatment of HS are still not fully clear. Various modes of cell death, including apoptosis, pyroptosis, ferroptosis, necroptosis and PANoptosis are involved in MODS induced by heatstroke. In this review, we summarized molecular mechanism, key transcriptional regulation as for HSF1, NRF2, NF-κB and PARP-1, and potential therapies of cell death resulting in CNS, liver, intestine, reproductive system and kidney injury induced by heat stress. Understanding the mechanism of cell death provides new targets to protect multi-organ function in HS.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510010, China
| | - Jie Zhu
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Dingshun Zhang
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Jinke Lv
- Department of Thoracic Surgery, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangping Wu
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510010, China.
| | - Zhifeng Liu
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
3
|
Chen C, Peng C, Hu Z, Ge L. Effects of bone marrow mesenchymal stromal cells-derived therapies for experimental traumatic brain injury: A meta-analysis. Heliyon 2024; 10:e25050. [PMID: 38322864 PMCID: PMC10844131 DOI: 10.1016/j.heliyon.2024.e25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Background Bone-marrow-derived mesenchymal stromal (stem) cells [also called MSC(M)] and their extracellular vesicles (EVs) are considered a potentially innovative form of therapy for traumatic brain injury (TBI). Nevertheless, their application to TBI particularly remains preclinical, and the effects of these cells remain unclear and controversial. Therefore, an updated meta-analysis of preclinical studies is necessary to assess the effectiveness of MSC(M) and MSC(M) derived EVs in clinical trials. Methods The following databases were searched (to December 2022): PubMed, Web of Science, and Embase. In this study, we measured functional outcomes based on the modified neurological severity score (mNSS), cognitive outcomes based on the Morris water maze (MWM), and histopathological outcomes based on lesion volume. A random effects meta-analysis was conducted to evaluate the effect of mNSS, MWM, and lesion volume. Results A total of 2163 unique records were identified from our search, with Fifty-five full-text articles satisfying inclusion criteria. A mean score of 5.75 was assigned to the studies' quality scores, ranging from 4 to 7. MSC(M) and MSC(M) derived EVs had an overall positive effect on the mNSS score and MWM with SMDs -2.57 (95 % CI -3.26; -1.88; p < 0.01) and - 2.98 (95 % CI -4.21; -1.70; p < 0.01), respectively. As well, MSC(M) derived EVs were effective in reducing lesion volume by an SMD of - 0.80 (95 % CI -1.20; -0.40; p < 0.01). It was observed that there was significant variation among the studies, but further analyses could not determine the cause of this heterogeneity. Conclusions MSC(M) and MSC(M) derived EVs are promising treatments for TBI in pre-clinical studies, and translation to the clinical domain appears warranted. Besides, large-scale trials in animals and humans are required to support further research due to the limited sample size of MSC(M) derived EVs.
Collapse
Affiliation(s)
- Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Cuiying Peng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan provincial key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, China
| |
Collapse
|
4
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
5
|
Liu X, Zhang G, Wei P, Hao L, Zhong L, Zhong K, Liu C, Liu P, Feng Q, Wang S, Zhang J, Tian R, Zhou L. 3D-printed collagen/silk fibroin/secretome derived from bFGF-pretreated HUCMSCs scaffolds enhanced therapeutic ability in canines traumatic brain injury model. Front Bioeng Biotechnol 2022; 10:995099. [PMID: 36091465 PMCID: PMC9449499 DOI: 10.3389/fbioe.2022.995099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The regeneration of brain tissue poses a great challenge because of the limited self-regenerative capabilities of neurons after traumatic brain injury (TBI). For this purpose, 3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (HUCMSCs) pretreated with bFGF scaffolds (3D-CS-bFGF-ST) at a low temperature were prepared in this study. From an in vitro perspective, 3D-CS-bFGF-ST showed good biodegradation, appropriate mechanical properties, and good biocompatibility. In regard to vivo, during the tissue remodelling processes of TBI, the regeneration of brain tissues was obviously faster in the 3D-CS-bFGF-ST group than in the other two groups (3D-printed collagen/silk fibroin/secretome derived from human umbilical cord blood mesenchymal stem cells (3D-CS-ST) group and TBI group) by motor assay, histological analysis, and immunofluorescence assay. Satisfactory regeneration was achieved in the two 3D-printed scaffold-based groups at 6 months postsurgery, while the 3D-CS-bFGF-ST group showed a better outcome than the 3D-CS-ST group.
Collapse
Affiliation(s)
- Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Guijun Zhang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Pan Wei
- Department of Neurosurgery, The First People’s Hospital of Long Quan yi District, Chengdu, China
| | - Lifang Hao
- Department of Radiology, Liao Cheng The Third People’s Hospital, Liaocheng, China
| | - Lin Zhong
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kunhon Zhong
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Chang Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qingbo Feng
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jianyong Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Rui Tian
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Jianyong Zhang, ; Rui Tian, ; Liangxue Zhou,
| |
Collapse
|