1
|
and Alternative Medicine EBC. Retracted: Development of Atorvastatin Calcium Biloaded Capsules for Oral Administration of Hypercholesterolemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9780462. [PMID: 37593018 PMCID: PMC10431995 DOI: 10.1155/2023/9780462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/4995508.].
Collapse
|
2
|
Jafari S, Khodaensaf F, Delattre C, Bazargan V, Lukova P. Mesoporous Starch Cryoaerogel Material as an Emerging Platform for Oral Drug Delivery: Synthesis and In Vitro Evaluation. Gels 2023; 9:623. [PMID: 37623078 PMCID: PMC10453812 DOI: 10.3390/gels9080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, a starch cryoaerogel formulation was developed as a carrier for poorly water-soluble drugs, like atorvastatin. Cryoaerogels were generated through a sol-gel method combined with a freeze-drying technique, and atorvastatin was incorporated into the obtained mesoporous systems during the solvent exchange stage. The formulated drug-loaded polymer structures were characterized in terms of their physicochemical properties, solid-state behavior, and cytotoxicity. They had a pore size of 27.56 nm and a drug loading size of 38.60%. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analyses indicated that atorvastatin was successfully incorporated into the cryoaerogel pores. The amorphous nature of the loaded drug was confirmed via X-ray diffraction (XRD). Furthermore, after the atorvastatin incorporation into the cryogel, the volume of nitrogen adsorbed on one gram of cryoaerogel (Vm), as well as the specific surface area (aBET) were reduced. The comparison between the drug release profiles of crystalline atorvastatin and the loaded formulation of atorvastatin showed that by including the drug into the pores of the developed cryoaerogel matrix its solubility was significantly improved-the time for the dissolution of 30% pure atorvastatin (t30%) was approximately 4 h, whereas the determined t30% for the formulated cryoaerogels was only 1 h. Moreover, the data from the MTT assay illustrated that the designed cryoaerogel could be used as a safe oral atorvastatin delivery system. According to obtained results, it could be concluded that the starch cryoaerogel formulation is a promising candidate for oral delivery of poorly water-soluble therapeutic agents.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Farzaneh Khodaensaf
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Cédric Delattre
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France;
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Vahid Bazargan
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
3
|
Francis AP, Ahmad A, Nagarajan SDD, Yogeeswarakannan HS, Sekar K, Khan SA, Meenakshi DU, Husain A, Bazuhair MA, Selvasudha N. Development of a Novel Red Clay-Based Drug Delivery Carrier to Improve the Therapeutic Efficacy of Acyclovir in the Treatment of Skin Cancer. Pharmaceutics 2023; 15:1919. [PMID: 37514105 PMCID: PMC10383537 DOI: 10.3390/pharmaceutics15071919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Acyclovir (ACV) is a promising candidate for drug repurposing because of its potential to provide an effective treatment for viral infections and non-viral diseases, such as cancer, for which limited treatment options exist. However, its poor physicochemical properties limit its application. This study aimed to formulate and evaluate an ACV-loaded red clay nanodrug delivery system exhibiting an effective cytotoxicity. The study focused on the preparation of a complex between ACV and red clay (RC) using sucrose stearate (SS) (nanocomplex F1) as an immediate-release drug-delivery system for melanoma treatment. The synthesized nanocomplex, which had nanosized dimensions, a negative zeta potential and the drug release of approximately 85% after 3 h, was found to be promising. Characterization techniques, including FT-IR, XRD and DSC-TGA, confirmed the effective encapsulation of ACV within the nanocomplex and its stability due to intercalation. Cytotoxicity experiments conducted on melanoma cancer cell lines SK-MEL-3 revealed that the ACV release from the nanocomplex formulation F1 effectively inhibited the growth of melanoma cancer cells, with an IC50 of 25 ± 0.09 µg/mL. Additionally, ACV demonstrated a significant cytotoxicity at approximately 20 µg/mL in the melanoma cancer cell line, indicating its potential repurposing for skin cancer treatment. Based on these findings, it can be suggested that the RC-SS complex could be an effective drug delivery carrier for localized cancer therapy. Furthermore, the results of an in silico study suggested the addition of chitosan to the formulation for a more effective drug delivery. Energy and interaction analyses using various modules in a material studio demonstrated the high stability of the composite comprising red clay, sucrose stearate, chitosan and ACV. Thus, it could be concluded that the utilization of the red clay-based drug delivery system is a promising strategy to improve the effectiveness of targeted cancer therapy.
Collapse
Affiliation(s)
- Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Aftab Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Krishnaraj Sekar
- Department of Pharmaceutical Technology, Anna University, Chennai 600025, India
| | - Shah Alam Khan
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
| | - Dhanalekshmi Unnikrishnan Meenakshi
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammed A Bazuhair
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
4
|
Khafagy ES, Motawee AO, Ghorab MM, Gardouh AR. Atorvastatin-loaded pro-nanolipospheres with ameliorated oral bioavailability and antidyslipidemic activity. Colloids Surf B Biointerfaces 2023; 227:113361. [PMID: 37236085 DOI: 10.1016/j.colsurfb.2023.113361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/08/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Despite significant advances in oral drug delivery technologies, many drugs are prone to limited oral bioavailability due to biological barriers that hinder drug absorption. Pro-nanolipospheres (PNL) are a form of delivery system that can potentiate the oral bioavailability of poorly water-soluble drugs through a variety of processes, including increased drug solubility and protecting them from degradation by intestinal or hepatic first-pass metabolism. In this study, pro-nanolipospheres were employed as a delivery vehicle for improving the oral bioavailability of the lipophilic statin, atorvastatin (ATR). Various ATR-loaded PNL formulations, composed of various pharmaceutical ingredients, were prepared by the pre-concentrate method and characterized by determining particle size, surface charge, and encapsulation efficiency. An optimized formula (ATR-PT PNL) showing the smallest particle size, highest zeta potential, and highest encapsulation efficiency was selected for further in vivo investigations. The in vivo pharmacodynamic experiments demonstrated that the optimized ATR-PT PNL formulation exerted a potent hypolipidemic effect in a Poloxamer® 407-induced hyper-lipidaemia rat model by restoring normal cholesterol and triglyceride serum levels along with alleviating serum levels of LDL while elevating serum HDL levels, compared to pure drug suspensions and marketed ATR (Lipitor®). Most importantly, oral administration of the optimized ATR-PT PNL formulation showed a dramatic increase in ATR oral bioavailability, as evinced by a 1.7- and 3.6-fold rise in systemic bioavailability when compared with oral commercial ATR suspensions (Lipitor®) and pure drug suspension, respectively. Collectively, pro-nanolipospheres might represent a promising delivery vehicle for enhancing the oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Abeer Osama Motawee
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
| | - Mamdouh Mostafa Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of pharmaceutical sciences, Faculty of pharmacy, Jadara university, Irbid 21110, Jordan
| |
Collapse
|
5
|
Alamri A, Alqahtani A, Alqahtani T, Al Fatease A, Asiri SA, Gahtani RM, Alnasser SM, Mohamed JMM, Menaa F. Design, Physical Characterizations, and Biocompatibility of Cationic Solid Lipid Nanoparticles in HCT-116 and 16-HBE Cells: A Preliminary Study. Molecules 2023; 28:molecules28041711. [PMID: 36838699 PMCID: PMC9968044 DOI: 10.3390/molecules28041711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
In this study, pEGFP-LUC was used as a model plasmid and three distinct cationic lipids (dioleyloxy-propyl-trimethylammonium chloride [DOTMA], dioleoyl trimethylammonium propane [DOTAP], and cetylpyridinium chloride [CPC]) were tested along with PEG 5000, as a nonionic surfactant, to prepare glyceryl monostearate (GMS)-based cationic solid lipid nanoparticles (cSLNs). Both the type and quantity of surfactant had an impact on the physicochemical characteristics of the cSLNs. Thermal analysis of the greater part of the endothermic peaks of the cSLNs revealed they were noticeably different from the individual pure compounds based on their zeta potential (ZP ranging from +17 to +56 mV) and particle size (PS ranging from 185 to 244 nm). The addition of cationic surfactants was required to produce nanoparticles (NPs) with a positive surface charge. This suggested that the surfactants and extensive entanglement of the lipid matrix GMS provided support for the behavioral diversity of the cSLNs and their capacity to interface with the plasmid DNA. Additionally, hemolytic assays were used to show that the cSLNs were biocompatible with the human colon cancer HCT-116 and human bronchial epithelial 16-HBE cell lines. The DOTMA 6-based cSLN was selected as the lead cSLN for further ex vivo and in vivo investigations. Taken together, these new findings might provide some guidance in selecting surfactants to prepare extremely efficient and non-toxic cSLN-based therapeutic delivery systems (e.g., gene therapy).
Collapse
Affiliation(s)
- Ali Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Saeed Ahmed Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Reem M. Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Jamal Moideen Muthu Mohamed
- Vaasudhara College of Pharmacy, Sante Circle, Chintamani Road, Hoskote 562114, Karnataka, India
- Correspondence: (J.M.M.M.); (F.M.)
| | - Farid Menaa
- Departments of Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
- Correspondence: (J.M.M.M.); (F.M.)
| |
Collapse
|
6
|
Polymeric ethosomal gel loaded with nimodipine: Optimisation, pharmacokinetic and histopathological analysis. Saudi Pharm J 2022; 30:1603-1611. [DOI: 10.1016/j.jsps.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022] Open
|