1
|
Aguilar J, Leyva E, Loredo-Carrillo SE, Cárdenas-Chaparro A, Martínez-Richa A, Hernández-López H, Araujo-Huitrado JG, Granados-López AJ, López-Hernández Y, López JA. Synthesis of Novel Fluoro Phenyl Triazoles Via Click Chemistry with or without Microwave Irradiation and their Evaluation as Anti-proliferative Agents in SiHa Cells. Curr Org Synth 2024; 21:559-570. [PMID: 37078356 DOI: 10.2174/1570179420666230420084000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 04/21/2023]
Abstract
AIMS Perform the synthesis of novel fluoro phenyl triazoles via click chemistry with or without microwave irradiation and their evaluation as anti-proliferative agents in SiHa cells. BACKGROUND Triazoles are heterocyclic compounds containing a five-member ring with two carbon and three nitrogen atoms. They are of great importance since many of them have shown to have biological activity as antifungal, antiviral, antibacterial, anti-HIV, anti-tuberculosis, vasodilator, and anticancer agents. OBJECTIVES Synthesize novel fluoro phenyl triazoles via click chemistry and evaluate their antiproliferative activity. METHODS First, several fluorophenyl azides were prepared. Reacting these aryl azides with phenylacetylene in the presence of Cu(I) catalyst, the corresponding fluoro phenyl triazoles were obtained by two methodologies, stirring at room temperature and under microwave irradiation at 40ºC. In addition, their antiproliferative activity was evaluated in cervical cancer SiHa cells. RESULTS Fluoro phenyl triazoles were obtained within minutes by means of microwave irradiation. The compound 3f, containing two fluorine atoms next to the carbon connected to the triazole ring, was the most potent among the fluoro phenyl triazoles tested in this study. Interestingly, the addition of a fluorine atom to the phenyl triazole structure in a specific site increases its antiproliferative effect as compared to parent phenyl triazole 3a without a fluorine atom. CONCLUSION Several fluoro phenyl triazoles were obtained by reacting fluoro phenyl azides with phenylacetylene in the presence of copper sulphate, sodium ascorbate and phenanthroline. Preparation of these triazoles with MW irradiation represents a better methodology since they are obtained within minutes and higher yields of cleaner compounds are obtained. In terms of biological studies, the proximity between fluorine atom and triazole ring increases its biological activity.
Collapse
Affiliation(s)
- Johana Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Elisa Leyva
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Silvia Elena Loredo-Carrillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP, 78290, México
| | - Agobardo Cárdenas-Chaparro
- Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte No. 39-115, Tunja, Boyacá, 15003, Colombia
| | - Antonio Martínez-Richa
- Departamento de Química, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, GTO, 36000, México
| | - Hiram Hernández-López
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus UAZ siglo XXI, carretera Zacatecas-Guadalajara km 6, Zacatecas, Zacatecas, 98160, México
| | - Jorge Gustavo Araujo-Huitrado
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Angélica Judith Granados-López
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Yamilé López-Hernández
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| | - Jesús Adrián López
- Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Campus II, Av. Preparatoria s/n, Zacatecas, Zacatecas, 98066, México
| |
Collapse
|
2
|
Mohamed MS, Ibrahim NA, Gouda AM, badr M, El-Sherief HA. Design, synthesis and molecular docking of 1,2,4-triazole schiff base hybrids as tubulin, EGFR inhibitors and apoptosis-inducers. J Mol Struct 2023; 1286:135621. [DOI: 10.1016/j.molstruc.2023.135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Gao J, Li X, Fu R, Li Y. Mechanism analysis and improved molecular modification: Design of high efficiency and environmentally friendly triazole fungicide substitutes. CHEMOSPHERE 2023:139150. [PMID: 37290508 DOI: 10.1016/j.chemosphere.2023.139150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The adverse effects of triazole fungicides (TFs) on the soil and the environmental damage caused by their residues have attracted the attention of the international community. To effectively prevent and control the above problems, this paper designed 72 substitutes of TFs with significantly better molecular functionality (>40%) using Paclobutrazol (PBZ) as the template molecule. Then, the comprehensive scores for environmental effects calculated after normalization by "extreme value method-entropy weight method-weighted average method" was the dependent variable, the structural parameters of TFs molecules was the independent variable (PBZ-214 was the template molecule) to construct the 3D-QSAR model of integrated environmental effects of TFs with high degradability, low bioenrichment, low endocrine disruption effects, and low hepatotoxicity and designed 46 substitutes of TFs with significantly better comprehensive environmental effects (>20%). After confirming the above effects of TFs and assessing human health risk and the universality of biodegradation and endocrine disruption, we screened PBZ-319-175 as the eco-friendly substitute of TF, which had high efficiency (improved functionality) and better environmental effects than those of the target molecule by 51.63% and 36.09%, respectively. Finally, the results of the molecular docking analysis showed that non-bonding interactions (hydrogen bonding, electrostatic, or polar force) predominantly affected the association between PBZ-319-175 and its biodegradable protein, and the hydrophobic effect of the amino acids distributed around PBZ-319-175 played a significant role. Additionally, we determined the microbial degradation path of PBZ-319-175 and found that the steric hindrance of the substituent group after molecular modification promoted its biodegradability. In this study, we enhanced molecular functionality twice and also reduce the major damage of TFs to the environment by performing iterative modifications. This paper provided theoretical support for the development and application of high-performance, eco-friendly substitutes of TFs.
Collapse
Affiliation(s)
- Jiaxuan Gao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Rui Fu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
4
|
Çetiner G, Çevik UA, Celik I, Bostancı HE, Özkay Y, Kaplancıklı ZA. New Imidazole Derivatives as Aromatase Inhibitor: Design, Synthesis, Biological Activity, Molecular Docking, and Computational ADME-Tox Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Novel Thiadiazole-Based Molecules as Promising Inhibitors of Black Fungi and Pathogenic Bacteria: In Vitro Antimicrobial Evaluation and Molecular Docking Studies. Molecules 2022; 27:molecules27113613. [PMID: 35684551 PMCID: PMC9182183 DOI: 10.3390/molecules27113613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Novel 1,3,4-thiadiazole derivatives were synthesized through the reaction of methyl 2-(4-hydroxy-3-methoxybenzylidene) hydrazine-1-carbodithioate and the appropriate hydrazonoyl halides in the presence of a few drops of diisopropylethylamine. The chemical structure of the newly fabricated compounds was inferred from their microanalytical and spectral data. With the increase in microbial diseases, fungi remain a devastating threat to human health because of the resistance of microorganisms to antifungal drugs. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) have higher mortality rates in many populations. The present study aimed to find new antifungal agents using the disc diffusion method, and minimal inhibitory concentration (MIC) values were estimated by the microdilution assay. An in vitro experiment of six synthesized chemical compounds exhibited antifungal activity against Rhizopus oryzae; compounds with an imidazole moiety, such as the compound 7, were documented to have energetic antibacterial, antifungal properties. As a result of these findings, this research suggests that the synthesized compounds could be an excellent choice for controlling black fungus diseases. Furthermore, a molecular docking study was achieved on the synthesized compounds, of which compounds 2, 6, and 7 showed the best interactions with the selected protein targets.
Collapse
|