1
|
Tan SM, Luo L, He YF, Li W, Wan XX. Daurisoline inhibits glycolysis of lung cancer by targeting the AKT-HK2 axis. Cancer Biol Ther 2025; 26:2442556. [PMID: 39699276 DOI: 10.1080/15384047.2024.2442556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Lung cancer, one of the most prevalent tumors, remains a clinical challenge with a poor five-year survival rate. Daurisoline, a bis-benzylisoquinoline alkaloid derived from the traditional Chinese herb Menispermum dauricum, is known to suppress tumor growth effectively. However, its precise mechanism of action remains unclear. In this study, we demonstrate that Daurisoline targets glycolysis and reduces the protein level of HK2, thereby inhibiting lung cancer progression. Mechanistic investigations reveal that Daurisoline directly binds to AKT and antagonizes the AKT-GSK3β-c-Myc-HK2 signaling axis. Furthermore, in an animal model, we validate the in vivo anti-tumor effect of Daurisoline without any observable side effects. Overall, our findings suggest that Daurisoline holds potential as an anti-tumor agent through its targeting of glycolysis.
Collapse
Affiliation(s)
- Shi-Ming Tan
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Luo
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Fu He
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Lee DE, Lee HM, Jun Y, Choi SY, Lee SJ, Kwon OS. Metformin induces apoptosis in TRAIL-resistant colorectal cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119873. [PMID: 39500444 DOI: 10.1016/j.bbamcr.2024.119873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/11/2024]
Abstract
Resistance to chemotherapy drugs, which commonly occurs during the treatment of colorectal cancer (CRC), can lead to tumor recurrence and metastasis, so combinational treatment strategies according to the cancer cell type are urgently needed to overcome drug resistance and increase therapeutic efficiency. To this end, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising anticancer strategy. Some CRC cell lines such as SW620 have low sensitivity to TRAIL, so additional sensitizers are required to make the strategy effective. Therefore, we focused on the apoptotic effect of combinational metformin and TRAIL treatment on TRAIL-resistant SW620 cells. Treatment with TRAIL alone did not induce apoptosis whereas combined treatment with metformin and TRAIL significantly increased it. TRAIL activated caspases through an extrinsic pathway but increased resistance to apoptosis through the protein kinase B or AKT (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway. On the other hand, metformin reduced the inhibitory effect of X-linked inhibitor of apoptosis (XIAP) by blocking the AKT and nuclear factor kappa B (NF-κB) pathways and activated CCAAT-enhancer-binding protein homologous protein (CHOP) via endoplasmic reticulum (ER) stress but without inducing apoptosis. In addition, metformin induced cell-cycle arrest, thereby blocking cell proliferation and growth. These results were also confirmed through an in vivo mouse xenograft CRC model, in which combined treatment with metformin and TRAIL induced tumor cell death, thus demonstrating the anticancer effect of their coadministration. Therefore, cotreatment of metformin and TRAIL could be an effective anticancer treatment strategy for TRAIL-resistant CRC.
Collapse
Affiliation(s)
- Da Eun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hae Min Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yunhyeok Jun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea.
| | - Su Jin Lee
- Department of Biochemistry, Chungbuk National University College of Medicine and Medical Research Center, Cheongju 28644, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Li Q, Yang L, Zhang C, Yuan J, Zhang J, Tao W, Zhou J. METTL16 deficiency attenuates apoptosis through translational control of extrinsic death receptor during nutrient deprivation. Biochem Biophys Res Commun 2024; 708:149802. [PMID: 38520913 DOI: 10.1016/j.bbrc.2024.149802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
METTL16 is a well-characterized m6A methyltransferase that has been reported to contribute to tumorigenesis in various types of cancer. However, the effect of METTL16 on tumor progression under restricted nutrient conditions, which commonly occur in tumor microenvironment, has yet to be elucidated. Herein, our study initially reported the inhibitory effect of METTL16 depletion on apoptosis under amino acid starvation conditions. Mechanistically, we determined that the METTL16 knockdown represses the expression of extrinsic death receptors at both transcription and translation levels. Depletion of METTL16 prevented protein synthesis of GCN2, resulting in diminished ATF4 expression in a GCN2-eIF2α-dependent manner. Reduction of ATF4 further declined the expression of apoptotic receptor protein DR5. Meanwhile, METTL16 deficiency directly hampered protein synthesis of FADD and DR5, thereby impairing apoptosis and promoting cancer cell survival. Taken together, our study provides novel evidence for the involvement of METTL16 in regulating cancer progression, suggesting that METTL16 as a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Qiujie Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Lu Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Chenxin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jingying Yuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Wenjun Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Jun Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|
5
|
Chen X, Yan Y, Liu Y, Yi Q, Xu Z. Tabersonine Enhances Olaparib Sensitivity through FHL1-Mediated Epithelial-Mesenchymal Transition in an Ovarian Tumor. JOURNAL OF NATURAL PRODUCTS 2024; 87:837-848. [PMID: 38417401 DOI: 10.1021/acs.jnatprod.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ovarian cancer (OVC) is one of the most aggressive gynecological malignancies worldwide. Although olaparib treatment has shown favorable outcomes against the treatment of OVC, its effectiveness remains limited in some OVC patients. Investigating new strategies to improve the therapeutic efficacy of olaparib against OVC is imperative. Our study identified tabersonine, a natural indole alkaloid, for its potential to increase the chemosensitivity of olaparib in OVC. The combined treatment of olaparib and tabersonine synergistically inhibited cell proliferation in OVC cells and suppressed tumor growth in A2780 xenografts. The combined treatment effectively suppressed epithelial-mesenchymal transition (EMT) by altering the expression of E-cadherin, N-cadherin, and vimentin and induced DNA damage responses. Integrating quantitative proteomics, FHL1 was identified as a potential regulator to modulate EMT after tabersonine treatment. Increased expression of FHL1 was induced by tabersonine treatment, while downregulation of FHL1 reversed the inhibitory effects of tabersonine on OVC cells by mediating EMT. In vivo findings further reflected that the combined treatment of tabersonine and olaparib significantly inhibited tumor growth and OVC metastasis through upregulation of FHL1. Our findings reveal the role of tabersonine in improving the sensitivity of olaparib in OVC through FHL1-mediated EMT, suggesting that tabersonine holds promise for future application in OVC treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
6
|
Liu X, Wang LL, Duan CY, Rong YR, Liang YQ, Zhu QX, Hao GP, Wang FZ. Daurisoline inhibits proliferation, induces apoptosis, and enhances TRAIL sensitivity of breast cancer cells by upregulating DR5. Cell Biol Int 2024. [PMID: 38563483 DOI: 10.1002/cbin.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Daurisoline (DS) is an isoquinoline alkaloid that exerts anticancer activities in various cancer cells. However, the underlying mechanisms through which DS affects the survival of breast cancer cells remain poorly understood. Therefore, the present study was undertaken to investigate the potential anticancer effect of DS on breast cancer cells and reveal the mechanism underlying the enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by DS. Cell counting kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assay were used to evaluate the ability of cell proliferation. Flow cytometry was selected to examine the cell cycle distribution. TUNEL assay was used to detect the cell apoptosis. The protein expression was measured by Western blot analysis. DS was found to reduce the cell viability and suppress the proliferation of MCF-7 and MDA-MB-231 cells by causing G1 phase cell cycle arrest. DS could trigger apoptosis by promoting the cleavage of caspase-8 and PARP. The phosphorylation of ERK, JNK, and p38MAPK was upregulated clearly following DS treatment. Notably, SP600125 (JNK inhibitor) pretreatment significantly abrogated DS-induced PARP cleavage. DS inactivated Akt/mTOR and Wnt/β-catenin signaling pathway and upregulated the expression of ER stress-related proteins. Additionally, DS amplified TRAIL-caused viability reduction and apoptosis in breast cancer cells. Mechanismly, DS upregulated the protein level of DR4 and DR5, and knockdown of DR5 attenuated the cotreatment-induced cleavage of PARP. Inhibition of JNK could block DS-induced upregulation of DR5. This study provides valuable insights into the mechanisms of DS inhibiting cell proliferation, triggering apoptosis, and enhancing TRAIL sensitivity of breast cancer cells.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Lin-Lin Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Cun-Yu Duan
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yan-Ru Rong
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Ya-Qi Liang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Qing-Xiang Zhu
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Gang-Ping Hao
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, People's Republic of China
- Center Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, People's Republic of China
| |
Collapse
|
7
|
Zhang JX, Yuan WC, Li CG, Zhang HY, Han SY, Li XH. A review on the mechanisms underlying the antitumor effects of natural products by targeting the endoplasmic reticulum stress apoptosis pathway. Front Pharmacol 2023; 14:1293130. [PMID: 38044941 PMCID: PMC10691277 DOI: 10.3389/fphar.2023.1293130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Cancer poses a substantial risk to human life and wellbeing as a result of its elevated incidence and fatality rates. Endoplasmic reticulum stress (ERS) is an important pathway that regulates cellular homeostasis. When ERS is under- or overexpressed, it activates the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)-, inositol-requiring enzyme 1 (IRE1)- and activating transcription Factor 6 (ATF6)-related apoptotic pathways to induce apoptosis. Tumor cells and microenvironment are susceptible to ERS, making the modulation of ERS a potential therapeutic approach for treating tumors. The use of natural products to treat tumors has substantially progressed, with various extracts demonstrating antitumor effects. Nevertheless, there are few reports on the effectiveness of natural products in inducing apoptosis by specifically targeting and regulating the ERS pathway. Further investigation and elaboration of its mechanism of action are still needed. This paper examines the antitumor mechanism of action by which natural products exert antitumor effects from the perspective of ERS regulation to provide a theoretical basis and new research directions for tumor therapy.
Collapse
Affiliation(s)
- Jie-Xiang Zhang
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Chen Yuan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- The College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cheng-Gang Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hai-Yan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiao-Hong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Qiu C, Shen X, Lu H, Chen Y, Xu C, Zheng P, Xia Y, Wang J, Zhang Y, Li S, Zou P, Cui R, Chen J. Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells. Cell Death Discov 2023; 9:375. [PMID: 37833257 PMCID: PMC10576049 DOI: 10.1038/s41420-023-01672-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death. Despite recent improvements in the treatment of colon cancer, new strategies to improve the overall survival of patients are urgently needed. Heat shock protein 90 (HSP90) is widely recognized as a promising target for treating various cancers, including colon cancer. However, no HSP90 inhibitor has been approved for clinical use due to limited efficacy. In this study, we evaluated the antitumor activities of HSP90 inhibitors in combination with piperlongumine in colon cancer cells. We show that combination treatment with HSP90 inhibitors and piperlongumine displayed strong synergistic interaction in colon cancer cells. These agents synergize by promoting ER stress, JNK activation, and DNA damage. This process is fueled by oxidative stress, which is caused by the accumulation of reactive oxygen species. These studies nominated piperlongumine as a promising agent for HSP90 inhibitor-based combination therapy against colon cancer.
Collapse
Affiliation(s)
- Chenyu Qiu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xin Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shaotang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jundixia Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|