1
|
Nong K, Qin X, Liu Z, Wang Z, Wu Y, Zhang B, Chen W, Fang X, Liu Y, Wang X, Zhang H. Potential effects and mechanism of flavonoids extract of Callicarpa nudiflora Hook on DSS-induced colitis in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155523. [PMID: 38489893 DOI: 10.1016/j.phymed.2024.155523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Callicarpa nudiflora Hook (C. nudiflora) is an anti-inflammatory, antimicrobial, antioxidant, and hemostatic ethnomedicine. To date, little has been reported regarding the activity of C. nudiflora against ulcerative colitis (UC). In this study, we investigated the effect of a flavonoid extract of C. nudiflora on Dextran Sulfate Sodium (DSS)-induced ulcerative colitis in mice. Mice in the treatment group (CNLF+DSS group) and drug-only (CNLF group) groups were administered 400 mg/kg of flavonoid extract of C. nudiflora leaf (CNLF), and drinking water containing 2.5 % DSS was given to the model and treatment groups. The symptoms of colitis were detected, relevant indicators were verified, intestinal barrier function was assessed, and the contents of the cecum were analyzed for intestinal microorganisms. The results showed that CNLF significantly alleviated the clinical symptoms and histological morphology of colitis in mice, inhibited the increase in pro-inflammatory factors (TNF-α, IL-6, IL-1β, and IFN-γ), and increased the level of IL-10. The expression of NF-κB and MAPK inflammatory signal pathway-related proteins (p-p65, p-p38, p-ERK, p-JNK) was regulated. The expression of tight junction proteins (ZO-1, OCLDN, and CLDN1) was increased, while the content of D-LA, DAO, and LPS was decreased. In addition, 16S rRNA sequencing showed that CNLF restored the gut microbial composition, and increased the relative abundance of Prevotellaceae, Intestinimonas butyriciproducens, and Barnesiella_intestinihominis. In conclusion, CNLF alleviated colitis by suppressing inflammation levels, improving intestinal barrier integrity, and modulating the intestinal microbiota, and therefore has promising future applications in the treatment of UC.
Collapse
Affiliation(s)
- Keyi Nong
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Xinyun Qin
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Zhineng Liu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Zihan Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Yijia Wu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Bin Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Wanyan Chen
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Xin Fang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Youming Liu
- Yibin Academy of Agricultural Sciences, Yibin 644600, China
| | - Xuemei Wang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China
| | - Haiwen Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou 571737, China.
| |
Collapse
|
2
|
Gu Y, Xu Y, Wang P, Zhao Y, Wan C. Research progress on molecular mechanism of pyroptosis caused by Helicobacter pylori in gastric cancer. Ann Med Surg (Lond) 2024; 86:2016-2022. [PMID: 38576917 PMCID: PMC10990316 DOI: 10.1097/ms9.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy worldwide. Helicobacter pylori (H. pylori), a Gram-negative spiral bacterium, has the ability to colonize and persist in the human gastric mucosa. Persistent H. pylori infection has been identified as a major risk factor for ~80% of GC cases. The interplay between H. pylori pathogenicity, genetic background, and environmental factors collectively contribute to GC transformation. Eradicating H. pylori infection is beneficial in reducing the recurrence of gastric cancer and residual cancer. However, the underlying molecular mechanisms involved in GC remain incompletely understood. Additionally, H. pylori reshapes the immune microenvironment within the stomach which may compromise immunotherapy efficacy in infected individuals. Clinical eradication of H. pylori infection still faces numerous challenges. In this review, the authors summarize recent research progress on elucidating the molecular mechanisms underlying H. pylori infection in GC development. Notably, CagA protein-a carcinogenic virulence factor predominantly expressed by Asian strains of H. pylori-induces inflammation and excessive ROS production within gastric mucosa cells. Dysregulation of multiple pyroptosis signalling pathways can lead to malignant transformation of these cells. MiRNA-1290 plays a crucial role in GC initiation and progression while serving as an indicator for disease progression dynamics. Pyroptosis exhibits dual roles both promoting carcinogenesis and inhibiting tumour growth; thus it holds potential clinical applications for drug-resistant GC treatment strategies. Furthermore, pyroptosis may play a regulatory role within the immune system during gastric cancer development. Lastly, the authors provide an overview on current concepts regarding pyroptosis as well as insights into miRNA-1290's pathogenicity and clinical value within immune mechanisms associated with GC, aiming to serve as reference material for researchers.
Collapse
Affiliation(s)
- Yulan Gu
- Department of Oncology, Affiliated Changshu Hospital of Nantong University
| | - Yeqiong Xu
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| | - Ping Wang
- School of Preclinical Medicine, Wannan Medical College, Wuhu
| | - Yu Zhao
- Department of Clinical Medicine, Qixiu Campus Medical College of Nantong University, Nantong, China
| | - Chuandan Wan
- General Medical research center of Changshu Medicine Examination Institute, Changshu
| |
Collapse
|
3
|
Wu L, Shan L, Xu D, Lin D, Bai B. Pyroptosis in cancer treatment and prevention: the role of natural products and their bioactive compounds. Med Oncol 2024; 41:66. [PMID: 38281254 DOI: 10.1007/s12032-023-02293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.
Collapse
Affiliation(s)
- Liyi Wu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, People's Republic of China
| | - Lina Shan
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengyong Xu
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengfeng Lin
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
4
|
Zhao T, Yu Z. Modified Gexia-Zhuyu Tang inhibits gastric cancer progression by restoring gut microbiota and regulating pyroptosis. Cancer Cell Int 2024; 24:21. [PMID: 38195483 PMCID: PMC10775600 DOI: 10.1186/s12935-024-03215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Gexia-Zhuyu Tang (GZT), a traditional Chinese medicine formula, is used to treat a variety of diseases. However, its roles in gastric cancer (GC) remain unclear. OBJECTIVE The aim of this study was to explore the roles and underlying molecular mechanisms of modified GZT in GC. METHODS The effects of modified GZT on GC were investigated by constructing mouse xenograft models with MFC cell line. The fecal samples from low-dose, high-dose, and without modified GZT treatment groups were collected for the 16S rRNA gene sequencing and fecal microbiota transplantation (FMT). Histopathological alterations of mice were evaluated using the hematoxylin-eosin (HE). Immunohistochemical (IHC) analysis with Ki67 and GSDMD was performed to measure tissue cell proliferation and pyroptosis, respectively. Proteins associated with pyroptosis, invasion, and metastasis were detected by Western blotting. Enzyme-linked immunosorbent assay (ELISA) was used to assess inflammation-related factors levels. RESULTS Modified GZT inhibited GC tumor growth and reduced metastasis and invasion-related proteins expression levels, including CD147, VEGF, and MMP-9. Furthermore, it notably promoted caspase-1-dependent pyroptosis, as evidenced by a dose-dependent increase in TNF-α, IL-1β, IL-18, and LDH levels, along with elevated protein expression of NLRP3, ASC, and caspase-1. Additionally, modified GZT increased species abundance and diversity of the intestinal flora. FMT assay identified that modified GZT inhibited GC tumor progression through regulation of intestinal flora. CONCLUSIONS Modified GZT treatment may promote pyroptosis by modulating gut microbiota in GC. This study identifies a new potential approach for the GC clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai City, 200240, China
| | - Zhijian Yu
- School of Traditional Chinese Medicine, Southern Medical University,Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, No. 1023-1063, Shatai South Road, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
5
|
Li L, Liao A. Application of pyroptosis score in the treatment and prognosis evaluation of gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1882-1889. [PMID: 38448382 PMCID: PMC10930744 DOI: 10.11817/j.issn.1672-7347.2023.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 03/08/2024]
Abstract
Pyroptosis is a kind of proinflammatory programmed cell death mediated by inflammasome. It affects the occurrence and development of gastric cancer through different ways, showing dual effects. On the one hand, inflammasome-mediated inflammatory response is highly likely to participate in the formation and development of early tumors; on the other hand, drugs can inhibit the deterioration process of tumor proliferation, invasion and metastasis through activating the pathways of inflammasome and pyroptosis. Recently, many agents based on pyroptosis have been found to inhibit gastric cancer by promoting the secondary pyroptosis pathway, regulating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and inhibiting caspase-1. The establishment of cell pyrodeath models can predict the prognosis of gastric cancer patients. Most of the models show that gastric cancer patients with high pyroptosis level have better prognosis and longer overall survival. Pyroptosis scores can also be used to predict the response of gastric cancer patients to immunotherapy and to screen potential anti-gastric cancer drugs. Therefore, in-depth understanding of the potential mechanism of pyroptosis affecting the progression of gastric cancer and the role of pyroptosis score in the treatment and prognosis assessment of gastric cancer will be helpful to find a new and effective method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Luyun Li
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| | - Aijun Liao
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|
6
|
Wu H, Qian D, Bai X, Sun S. Targeted Pyroptosis Is a Potential Therapeutic Strategy for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2515525. [PMID: 36467499 PMCID: PMC9715319 DOI: 10.1155/2022/2515525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023]
Abstract
As a type of regulated cell death (RCD) mode, pyroptosis plays an important role in several kinds of cancers. Pyroptosis is induced by different stimuli, whose pathways are divided into the canonical pathway and the noncanonical pathway depending on the formation of the inflammasomes. The canonical pathway is triggered by the assembly of inflammasomes, and the activation of caspase-1 and then the cleavage of effector protein gasdermin D (GSDMD) are promoted. While in the noncanonical pathway, the caspase-4/5/11 (caspase 4/5 in humans and caspase 11 in mice) directly cleave GSDMD without the assembly of inflammasomes. Pyroptosis is involved in various cancers, such as lung cancer, gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma. Pyroptosis in gastric cancer, hepatic carcinoma, breast cancer, and colorectal carcinoma is related to the canonical pathway, while both the canonical and noncanonical pathway participate in lung cancer. Moreover, simvastatin, metformin, and curcumin have effect on these cancers and simultaneously promote the pyroptosis of cancer cells. Accordingly, pyroptosis may be an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Hao Wu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
- Clinical Medicine, Three Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Dianlun Qian
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiangfeng Bai
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|