1
|
Vijaya P, Chander S, Fernandes R, Rodrigues AP, Raja M. Flamingo Search Sailfish Optimizer Based SqueezeNet for Detection of Breast Cancer Using MRI Images. Cancer Invest 2024; 42:745-768. [PMID: 39301618 DOI: 10.1080/07357907.2024.2403088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Breast cancer with increased risk in women is identified with Breast Magnetic Resonance Imaging (Breast MRI) and this helps in evaluating treatment therapies. Breast MRI is time time-consuming process that involves the assessment of current imaging. This research work depends on the detection of breast cancer at the earlier stages. Among various cancers, breast cancer in women occurs in larger accounts for almost 30% of estimated cancer cases. In this research, many steps are followed for breast cancer detection like pre-processing, segmentation, augmentation, extraction of features, and cancer detection. Here, the median filter is utilized for pre-processing, as well as segmentation is followed after pre-processing, which is done by Psi-Net. Moreover, the process of augmentation like shearing, translation, and cropping are followed after segmentation. Also, the segmented image tends to process feature extraction, where features like shape features, Completed Local Binary Pattern (CLBP), Pyramid Histogram of Oriented Gradients (PHOG), and statistical features are extracted. Finally, breast cancer is detected using the DL model, SqueezeNet. Here, the newly devised Flamingo Search SailFish Optimizer (FSSFO) is used in training Psi-Net as well as SqueezeNet. Furthermore, FSSFO is the combination of both the Flamingo Search Algorithm (FSA) and SailFish Optimizer (SFO).
Collapse
Affiliation(s)
- P Vijaya
- Department of Mathematics & Computer Science, Modern College of Business and Sciences, Muscat, Oman
| | - Satish Chander
- Department of Computer Science and Engineering, Birla Institute of Technology, Ranchi, India
| | - Roshan Fernandes
- Department of Cyber Security, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, India
| | - Anisha P Rodrigues
- Department of Computer Science and Engineering, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, India
| | - Maheswari Raja
- School of Computer Science and Information Technology, Symbiosis Skills and Professional University, Pune, India
| |
Collapse
|
2
|
Rai HM, Yoo J. A comprehensive analysis of recent advancements in cancer detection using machine learning and deep learning models for improved diagnostics. J Cancer Res Clin Oncol 2023; 149:14365-14408. [PMID: 37540254 DOI: 10.1007/s00432-023-05216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE There are millions of people who lose their life due to several types of fatal diseases. Cancer is one of the most fatal diseases which may be due to obesity, alcohol consumption, infections, ultraviolet radiation, smoking, and unhealthy lifestyles. Cancer is abnormal and uncontrolled tissue growth inside the body which may be spread to other body parts other than where it has originated. Hence it is very much required to diagnose the cancer at an early stage to provide correct and timely treatment. Also, manual diagnosis and diagnostic error may cause of the death of many patients hence much research are going on for the automatic and accurate detection of cancer at early stage. METHODS In this paper, we have done the comparative analysis of the diagnosis and recent advancement for the detection of various cancer types using traditional machine learning (ML) and deep learning (DL) models. In this study, we have included four types of cancers, brain, lung, skin, and breast and their detection using ML and DL techniques. In extensive review we have included a total of 130 pieces of literature among which 56 are of ML-based and 74 are from DL-based cancer detection techniques. Only the peer reviewed research papers published in the recent 5-year span (2018-2023) have been included for the analysis based on the parameters, year of publication, feature utilized, best model, dataset/images utilized, and best accuracy. We have reviewed ML and DL-based techniques for cancer detection separately and included accuracy as the performance evaluation metrics to maintain the homogeneity while verifying the classifier efficiency. RESULTS Among all the reviewed literatures, DL techniques achieved the highest accuracy of 100%, while ML techniques achieved 99.89%. The lowest accuracy achieved using DL and ML approaches were 70% and 75.48%, respectively. The difference in accuracy between the highest and lowest performing models is about 28.8% for skin cancer detection. In addition, the key findings, and challenges for each type of cancer detection using ML and DL techniques have been presented. The comparative analysis between the best performing and worst performing models, along with overall key findings and challenges, has been provided for future research purposes. Although the analysis is based on accuracy as the performance metric and various parameters, the results demonstrate a significant scope for improvement in classification efficiency. CONCLUSION The paper concludes that both ML and DL techniques hold promise in the early detection of various cancer types. However, the study identifies specific challenges that need to be addressed for the widespread implementation of these techniques in clinical settings. The presented results offer valuable guidance for future research in cancer detection, emphasizing the need for continued advancements in ML and DL-based approaches to improve diagnostic accuracy and ultimately save more lives.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Rai HM. Cancer detection and segmentation using machine learning and deep learning techniques: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2023. [DOI: 10.1007/s11042-023-16520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
|
4
|
Mokoatle M, Marivate V, Mapiye D, Bornman R, Hayes VM. A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. BMC Bioinformatics 2023; 24:112. [PMID: 36959534 PMCID: PMC10037872 DOI: 10.1186/s12859-023-05235-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Using visual, biological, and electronic health records data as the sole input source, pretrained convolutional neural networks and conventional machine learning methods have been heavily employed for the identification of various malignancies. Initially, a series of preprocessing steps and image segmentation steps are performed to extract region of interest features from noisy features. Then, the extracted features are applied to several machine learning and deep learning methods for the detection of cancer. METHODS In this work, a review of all the methods that have been applied to develop machine learning algorithms that detect cancer is provided. With more than 100 types of cancer, this study only examines research on the four most common and prevalent cancers worldwide: lung, breast, prostate, and colorectal cancer. Next, by using state-of-the-art sentence transformers namely: SBERT (2019) and the unsupervised SimCSE (2021), this study proposes a new methodology for detecting cancer. This method requires raw DNA sequences of matched tumor/normal pair as the only input. The learnt DNA representations retrieved from SBERT and SimCSE will then be sent to machine learning algorithms (XGBoost, Random Forest, LightGBM, and CNNs) for classification. As far as we are aware, SBERT and SimCSE transformers have not been applied to represent DNA sequences in cancer detection settings. RESULTS The XGBoost model, which had the highest overall accuracy of 73 ± 0.13 % using SBERT embeddings and 75 ± 0.12 % using SimCSE embeddings, was the best performing classifier. In light of these findings, it can be concluded that incorporating sentence representations from SimCSE's sentence transformer only marginally improved the performance of machine learning models.
Collapse
Affiliation(s)
- Mpho Mokoatle
- Department of Computer Science, University of Pretoria, Pretoria, South Africa.
| | - Vukosi Marivate
- Department of Computer Science, University of Pretoria, Pretoria, South Africa
| | | | - Riana Bornman
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Vanessa M Hayes
- School of Medical Sciences, The University of Sydney, Sydney, Australia
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Nasir MU, Zubair M, Ghazal TM, Khan MF, Ahmad M, Rahman AU, Hamadi HA, Khan MA, Mansoor W. Kidney Cancer Prediction Empowered with Blockchain Security Using Transfer Learning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7483. [PMID: 36236584 PMCID: PMC9572837 DOI: 10.3390/s22197483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Kidney cancer is a very dangerous and lethal cancerous disease caused by kidney tumors or by genetic renal disease, and very few patients survive because there is no method for early prediction of kidney cancer. Early prediction of kidney cancer helps doctors start proper therapy and treatment for the patients, preventing kidney tumors and renal transplantation. With the adaptation of artificial intelligence, automated tools empowered with different deep learning and machine learning algorithms can predict cancers. In this study, the proposed model used the Internet of Medical Things (IoMT)-based transfer learning technique with different deep learning algorithms to predict kidney cancer in its early stages, and for the patient's data security, the proposed model incorporates blockchain technology-based private clouds and transfer-learning trained models. To predict kidney cancer, the proposed model used biopsies of cancerous kidneys consisting of three classes. The proposed model achieved the highest training accuracy and prediction accuracy of 99.8% and 99.20%, respectively, empowered with data augmentation and without augmentation, and the proposed model achieved 93.75% prediction accuracy during validation. Transfer learning provides a promising framework with the combination of IoMT technologies and blockchain technology layers to enhance the diagnosing capabilities of kidney cancer.
Collapse
Affiliation(s)
- Muhammad Umar Nasir
- Riphah School of Computing and Innovation, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Zubair
- Faculty of Computing, Riphah International University, Islamabad 45000, Pakistan
| | - Taher M. Ghazal
- Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- College of Computer and Information Technology, American University in the Emirates, Dubai Academic City, Dubai 503000, United Arab Emirates
| | - Muhammad Farhan Khan
- Department of Forensic Sciences, University of Health Sciences, Lahore 54000, Pakistan
| | - Munir Ahmad
- School of Computer Science, National College of Business Administration & Economics, Lahore 54000, Pakistan
| | - Atta-ur Rahman
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hussam Al Hamadi
- College of Engineering and IT, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Wathiq Mansoor
- College of Engineering and IT, University of Dubai, Dubai 14143, United Arab Emirates
| |
Collapse
|
6
|
Nasir MU, Khan S, Mehmood S, Khan MA, Zubair M, Hwang SO. Network Meddling Detection Using Machine Learning Empowered with Blockchain Technology. SENSORS (BASEL, SWITZERLAND) 2022; 22:6755. [PMID: 36146104 PMCID: PMC9500681 DOI: 10.3390/s22186755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
The study presents a framework to analyze and detect meddling in real-time network data and identify numerous meddling patterns that may be harmful to various communication means, academic institutes, and other industries. The major challenge was to develop a non-faulty framework to detect meddling (to overcome the traditional ways). With the development of machine learning technology, detecting and stopping the meddling process in the early stages is much easier. In this study, the proposed framework uses numerous data collection and processing techniques and machine learning techniques to train the meddling data and detect anomalies. The proposed framework uses support vector machine (SVM) and K-nearest neighbor (KNN) machine learning algorithms to detect the meddling in a network entangled with blockchain technology to ensure the privacy and protection of models as well as communication data. SVM achieves the highest training detection accuracy (DA) and misclassification rate (MCR) of 99.59% and 0.41%, respectively, and SVM achieves the highest-testing DA and MCR of 99.05% and 0.95%, respectively. The presented framework portrays the best meddling detection results, which are very helpful for various communication and transaction processes.
Collapse
Affiliation(s)
- Muhammad Umar Nasir
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Safiullah Khan
- Department of IT Convergence Engineering, Gachon University, Seongnam 13120, Korea
| | - Shahid Mehmood
- Riphah School of Computing & Innovation, Faculty of Computing, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Adnan Khan
- Pattern Recognition and Machine Learning Lab, Department of Software, Gachon University, Seongnam 13557, Korea
| | - Muhammad Zubair
- Faculty of Computing, Riphah International University, Islamabad Campus, Islamabad 45000, Pakistan
| | - Seong Oun Hwang
- Department of Computer Engineering, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
7
|
IoMT-Based Mitochondrial and Multifactorial Genetic Inheritance Disorder Prediction Using Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2650742. [PMID: 35909844 PMCID: PMC9334098 DOI: 10.1155/2022/2650742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
A genetic disorder is a serious disease that affects a large number of individuals around the world. There are various types of genetic illnesses, however, we focus on mitochondrial and multifactorial genetic disorders for prediction. Genetic illness is caused by a number of factors, including a defective maternal or paternal gene, excessive abortions, a lack of blood cells, and low white blood cell count. For premature or teenage life development, early detection of genetic diseases is crucial. Although it is difficult to forecast genetic disorders ahead of time, this prediction is very critical since a person's life progress depends on it. Machine learning algorithms are used to diagnose genetic disorders with high accuracy utilizing datasets collected and constructed from a large number of patient medical reports. A lot of studies have been conducted recently employing genome sequencing for illness detection, but fewer studies have been presented using patient medical history. The accuracy of existing studies that use a patient's history is restricted. The internet of medical things (IoMT) based proposed model for genetic disease prediction in this article uses two separate machine learning algorithms: support vector machine (SVM) and K-Nearest Neighbor (KNN). Experimental results show that SVM has outperformed the KNN and existing prediction methods in terms of accuracy. SVM achieved an accuracy of 94.99% and 86.6% for training and testing, respectively.
Collapse
|