1
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Li S, Mu R, Guo X. Defensins regulate cell cycle: Insights of defensins on cellular proliferation and division. Life Sci 2024; 349:122740. [PMID: 38777302 DOI: 10.1016/j.lfs.2024.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Defensins are a class of small antimicrobial peptides that play a crucial role against pathogens. However, recent research has highlighted defensins exhibit the ability to influence cell cycle checkpoints, promoting or inhibiting specific phases such as G1 arrest or S/M transition. By regulating the cell cycle, defensins impact the proliferation of normal and cancerous cells, with implications for cancer development and progression. Dysregulation of defensin expression can disrupt the delicate balance of cell cycle regulation, leading to uncontrolled cell growth and an increased risk of tumor formation. Defensins contribute to the resolution of inflammation, stimulate angiogenesis, and enhance the migration and proliferation of cells involved in tissue repair. Furthermore, The ability of defensins to respond to microenvironmental changes further demonstrates the significance of these peptides in host defense mechanisms and immune function. By adjusting their expression, defensins continue to combat pathogens effectively and maintain homeostasis within the body. This review highlights the multifaceted role of defensins in regulating the cell cycle and their broader implications in cancer progression, tissue repair, and microenvironmental response.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Rongrong Mu
- Affiliated Hospital of Sichuan Nursing Vocational College, The Third People's Hospital of Sichuan Province, China
| | - Xueqin Guo
- Department of Pathology, Gaomi City People's Hospital, Gaomi 261500, China
| |
Collapse
|
3
|
Leveque M, Guittat M, Thivichon-Prince B, Reuzeau A, Eveillard M, Faure M, Farges JC, Richert R, Bekhouche M, Ducret M. Next generation antibacterial strategies for regenerative endodontic procedures: A scoping review. Int Endod J 2024; 57:804-814. [PMID: 37485747 DOI: 10.1111/iej.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The clinical results following regenerative endodontic procedures (REPs) vary according to numerous parameters, including the presence of bacteria. This limitation reduces the indications for REPs and calls for the development of next generation antibacterial strategies (NGAS) providing alternatives to current antibacterial strategies (CAS) such as double or triple antibiotic paste (DAP/TAP) and (Ca(OH)2). OBJECTIVES The present scoping review aims to describe the current trends regarding the use of such strategies and highlight future perspectives. METHODS Four databases (PUBMed, Cochrane, ClinicalTrials and Science Direct) were searched until 1st May 2023. RESULTS A total of 918 records were identified, 133 were screened and assessed for eligibility, and 87 articles were included. The findings show that (1) clinical studies are only available for CAS, (2) although next generation strategies are the most studied approach since 2017, they are all at the pre-clinical stage, (3) most of the next generation strategies use galenic forms which offer cell support and colonization and which simultaneously contain antibacterial molecules as alternatives to CAS and to antibiotics in general, (4) standardization is required for future research, specifically regarding the bacterial strains studied, the use of biofilm studies and the cellular behaviour assessments. CONCLUSION Although NGAS are promising strategies to improve REPs in the context of infection, the current evidence is mostly limited to pre-clinical studies. Further methodological improvement is required to allow relevant comparisons between studies and to reduce the time from bench to bedside.
Collapse
Affiliation(s)
- Marianne Leveque
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Guittat
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Béatrice Thivichon-Prince
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Alicia Reuzeau
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Matthieu Eveillard
- Département de Biologie des Agents Infectieux, CHU Angers, Angers, France
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, INCIT, Angers, France
| | - Marjorie Faure
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Raphaël Richert
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
- Laboratoire de Mécanique Des Contacts et Structures, CNRS/INSA, Villeurbanne, France
| | - Mourad Bekhouche
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
| | - Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Chen M, Hu Z, Shi J, Xie Z. Human β-defensins and their synthetic analogs: Natural defenders and prospective new drugs of oral health. Life Sci 2024; 346:122591. [PMID: 38548013 DOI: 10.1016/j.lfs.2024.122591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
As a family of cationic host defense peptides, human β-defensins (HBDs) are ubiquitous in the oral cavity and are mainly synthesized primarily by epithelial cells, serving as the primary barrier and aiming to prevent microbial invasion, inflammation, and disease while maintaining physiological homeostasis. In recent decades, there has been great interest in their biological functions, structure-activity relationships, mechanisms of action, and therapeutic potential in oral diseases. Meanwhile, researchers are dedicated to improving the properties of HBDs for clinical application. In this review, we first describe the classification, structural characteristics, functions, and mechanisms of HBDs. Next, we cover the role of HBDs and their synthetic analogs in oral diseases, including dental caries and pulp infections, periodontitis, peri-implantitis, fungal/viral infections and oral mucosal diseases, and oral squamous cell carcinoma. Finally, we discuss the limitations and challenges of clinical translation of HBDs and their synthetic analogs, including, but not limited to, stability, bioavailability, antimicrobial activity, resistance, and toxicity. Above all, this review summarizes the biological functions, mechanisms of action, and therapeutic potential of both natural HBDs and their synthetic analogs in oral diseases, as well as the challenges associated with clinical translation, thus providing substantial insights into the laboratory development and clinical application of HBDs in oral diseases.
Collapse
Affiliation(s)
- Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
5
|
Chen Y, Lu W, Zhou Y, Hu Z, Wu H, Gao Q, Shi J, Wu W, Lv S, Yao K, He Y, Xie Z. A Spatiotemporal Controllable Biomimetic Skin for Accelerating Wound Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310556. [PMID: 38386291 DOI: 10.1002/smll.202310556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Indexed: 02/23/2024]
Abstract
Skin injury repair is a dynamic process involving a series of interactions over time and space. Linking human physiological processes with materials' changes poses a significant challenge. To match the wound healing process, a spatiotemporal controllable biomimetic skin is developed, which comprises a three-dimensional (3D) printed membrane as the epidermis, a cell-containing hydrogel as the dermis, and a cytokine-laden hydrogel as the hypodermis. In the initial stage of the biomimetic skin repair wound, the membrane frame aids wound closure through pre-tension, while cells proliferate within the hydrogel. Next, as the frame disintegrates over time, cells released from the hydrogel migrate along the residual membrane. Throughout the process, continuous cytokines release from the hypodermis hydrogel ensures comprehensive nourishment. The findings reveal that in the rat full-thickness skin defect model, the biomimetic skin demonstrated a wound closure rate eight times higher than the blank group, and double the collagen content, particularly in the early repair process. Consequently, it is reasonable to infer that this biomimetic skin holds promising potential to accelerate wound closure and repair. This biomimetic skin with mechanobiological effects and spatiotemporal regulation emerges as a promising option for tissue regeneration engineering.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Shang Lv
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
6
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Liu G, Bae KB, Yang Y, Lee BN, Hwang YC. Icariin negatively regulated lipopolysaccharide-induced inflammation and ameliorated the odontogenic activity of human dental pulp cells in vitro. Heliyon 2023; 9:e23282. [PMID: 38144358 PMCID: PMC10746513 DOI: 10.1016/j.heliyon.2023.e23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1β (IL-1β), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.
Collapse
Affiliation(s)
- Guo Liu
- Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Kkot-Byeol Bae
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Ying Yang
- Dental Implant Center, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| |
Collapse
|
8
|
Hu Z, Zhou Y, Wu H, Hong G, Chen M, Jin W, Lu W, Zuo M, Xie Z, Shi J. An injectable photopolymerizable chitosan hydrogel doped anti-inflammatory peptide for long-lasting periodontal pocket delivery and periodontitis therapy. Int J Biol Macromol 2023; 252:126060. [PMID: 37524282 DOI: 10.1016/j.ijbiomac.2023.126060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Periodontitis is a common chronic inflammatory disease caused by plaque that leads to alveolar bone resorption and tooth loss. Inflammation control and achieving better tissue repair are the key to periodontitis treatment. In this study, human β-Defensin 1 short motif Pep-B with inflammation inhibition and differentiation regulation properties, is firstly used in the treatment of periodontitis, and an injectable photopolymerizable Pep-B/chitosan methacryloyl composite hydrogel (CMSA/Pep-B) is constructed. We confirm that Pep-B improves inflammation, and restores osteogenic behavior and function of injured stem cells. CMSA/Pep-B has good injectability, fluidity and photopolymerizability, and can sustainably release Pep-B to maintain drug concentration in periodontal pockets. Furthermore, animal experiments showed that CMSA/Pep-B significantly ameliorated the inflammation of the periodontium and reduced the alveolar bone loss by decreasing inflammatory infiltration, osteoclast formation and collagen destruction. In conclusion, CMSA/Pep-B is envisaged to be a novel bioactive material or therapeutic drug for treating periodontitis.
Collapse
Affiliation(s)
- Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Haiyan Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Gaoying Hong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Mumian Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Minghao Zuo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
9
|
Sharma L, Bisht GS. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements. Curr Pharm Des 2023; 29:3005-3017. [PMID: 38018196 DOI: 10.2174/0113816128248959231102114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|