Wu Y, Ni Z, Wang S, Sun Y, Luo X, Wang X, Liu J. The mechanism of Sanzi Yangqin decoction for asthma treatment based on network pharmacology and experimental verification.
BMC Complement Med Ther 2023;
23:452. [PMID:
38093206 PMCID:
PMC10717567 DOI:
10.1186/s12906-023-04272-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND
Asthma is a chronic airway inflammatory disease characterized by airway inflammation, mucus hypersecretion, airway hyper-reactivity. Sanzi Yangqin Decoction (SZYQD) is widely prescribed for asthma treatment. Its anti-asthma activities have been reported in animal model, but the exact mechanism and targets of SZYQD in asthma treatment have not been fully elucidated.
METHODS
A network pharmacological approach was used to predict the active components, targets, and signalling pathways of SZYQD in asthma, including potential target prediction, protein‒protein interaction (PPI) network construction and analysis, and Gene Ont (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The active ingredients were identified from the SZYQD, and were molecular docked according to the results of network pharmacology. A mouse model of asthma induced by ovalbumin (OVA) and lipopolysaccharide (LPS) was constructed to evaluate the therapeutic effect of SZYQD. Furthermore, the effects of SZYQD and its active ingredients were tested in vitro for regulating inflammation and MUC5AC expression (two main pathophysiologic abnormalities of asthma) in macrophages and airway epithelial cells by using Real-time PCR and western blotting.
RESULTS
A total of 28 active ingredients and 111 HUB genes were screened in the relevant databases, including three key ingredients (luteolin, β-carotene, and Sinapine) and nine core target genes (JUN, CTNNB1, IL10, TP53, AKT1, STAT3, TNF, IL6 and EGFR). KEGG and GO analysis indicated that the potential anti-asthmatic mechanisms of SZYQD were related to PI3K-Akt signalling pathway and response to lipopolysaccharide, etc. In the in vivo asthmatic model, our findings demonstrated that SZYQD exerted a protective effect against asthmatic mice induced by OVA and LPS through the inhibition of inflammation and mucus overproduction. Consistently, cell experiments showed that the SZYQD extract or the key active ingredients luteolin significantly decreased lipopolysaccharide (LPS)-induced IL-6 expression and activation of the NF-κB pathway in macrophages. In addition, SZYQD extract or luteolin inhibited activation of the AKT pathway and expression of MUC5AC induced by EGF in airway epithelial cells.
CONCLUSION
The anti-asthmatic mechanism of SZYQD might be associated with inhibiting inflammation and airway mucus hypersecretion by regulating the NF-κB and AKT signalling pathways as predicted by network pharmacology, which provides more evidence for the application of SZYQD in asthma treatment.
Collapse