1
|
Wang X, Zhang X, Xie W, Wang Y, Zang S, Ban Z, Li D, Jia Y, Gao Y. Lindera aggregata improves intestinal function and alleviates depressive behaviors through the BDNF/TrkB/CREB signaling pathway induced by CUMS in mice. Brain Res 2024; 1846:149295. [PMID: 39490402 DOI: 10.1016/j.brainres.2024.149295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Depression is a common mental illness, which is highly related to intestinal motor dysfunction and causes a global burden of disease. Lindera aggregata (LA), a traditional medicinal herb, has been used to treat gastrointestinal disorders; however, the effect of LA on depression remains unclear. Here, we assessed the impact of LA on chronic unpredictable mild stress (CUMS)-induced depression in mice and explored the related mechanisms. The results showed that LA ameliorated depressive behaviors in mice exposed to CUMS, as evidenced by improved performance in the sucrose preference test, force swimming test, and open field test, as well as increased serum levels of adrenocorticotropic hormone and 5-hydroxytryptamine. In addition, LA increased the serum levels of D-xylose and ghrelin, indicating that LA can promote gastrointestinal motility. Additional studies revealed that LA relieved CUMS-induced hippocampal tissue damage, as shown by hematoxylin and eosin and Nissl staining. LA increased the expression levels of brain-derived neurotrophic factor (BDNF) and promoted the activation of tropomyosin receptor kinase B (TrkB) and cAMP response element-binding (CREB) in the hippocampus of CUMS-exposed mice or in corticosterone-injured HT22 cells. In conclusion, LA can improve CUMS-induced depressive behavior in mice, potentially through hippocampal neuroprotection mediated by the BDNF/TrkB/CREB signaling pathway, which also contributes to improved intestinal function.
Collapse
Affiliation(s)
- Xinliu Wang
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xin Zhang
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Wei Xie
- Health Science and Technology Vocational College of Hengshui, Hengshui 053000, China
| | - Yuanyuan Wang
- Department of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China
| | - Shuxian Zang
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ziyun Ban
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Depei Li
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Yugai Jia
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China.
| | - Yonggang Gao
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei International Cooperation Center for Ion channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang 050091, China.
| |
Collapse
|
2
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Research progress on rodent models and its mechanisms of liver injury. Life Sci 2024; 337:122343. [PMID: 38104860 DOI: 10.1016/j.lfs.2023.122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The liver is the most important organ for biological transformation in the body and is crucial for maintaining the body's vital activities. Liver injury is a serious pathological condition that is commonly found in many liver diseases. It has a high incidence rate, is difficult to cure, and is prone to recurrence. Liver injury can cause serious harm to the body, ranging from mild to severe fatty liver disease. If the condition continues to worsen, it can lead to liver fibrosis and cirrhosis, ultimately resulting in liver failure or liver cancer, which can seriously endanger human life and health. Therefore, establishing an rodent model that mimics the pathogenesis and severity of clinical liver injury is of great significance for better understanding the pathogenesis of liver injury patients and developing more effective clinical treatment methods. The author of this article summarizes common chemical liver injury models, immune liver injury models, alcoholic liver injury models, drug-induced liver injury models, and systematically elaborates on the modeling methods, mechanisms of action, pathways of action, and advantages or disadvantages of each type of model. The aim of this study is to establish reliable rodent models for researchers to use in exploring anti-liver injury and hepatoprotective drugs. By creating more accurate theoretical frameworks, we hope to provide new insights into the treatment of clinical liver injury diseases.
Collapse
Affiliation(s)
- Jingxin Mao
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lihong Tan
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Cheng Tian
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Hao Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Zhaojing Zhu
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China
| | - Yan Li
- Chongqing Medical and Pharmaceutical College, Chongqing 400030, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing 400030, China.
| |
Collapse
|