1
|
Zeng Y, Wei R, Bao L, Xue T, Qin Y, Ren M, Bai Q, Yao Q, Yu C, Chen C, Wei P, Yu B, Cao J, Li X, Zhang Q, Zhou X. Characteristics and Clinical Value of MYC , BCL2, and BCL6 Rearrangement Detected by Next-generation Sequencing in DLBCL. Am J Surg Pathol 2024; 48:919-929. [PMID: 38937822 PMCID: PMC11251499 DOI: 10.1097/pas.0000000000002258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
MYC , BCL2, and BCL6 rearrangements are clinically important events of diffuse large B-cell lymphoma (DLBCL). The ability and clinical value of targeted next-generation sequencing (NGS) in the detection of these rearrangements in DLBCL have not been fully determined. We performed targeted NGS (481-gene-panel) and break-apart FISH of MYC , BCL2, and BCL6 gene regions in 233 DLBCL cases. We identified 88 rearrangements (16 MYC ; 20 BCL2 ; 52 BCL6 ) using NGS and 96 rearrangements (28 MYC ; 20 BCL2 ; 65 BCL6 ) using FISH. The consistency rates between FISH and targeted NGS for the detection of MYC , BCL2, and BCL6 rearrangements were 93%, 97%, and 89%, respectively. FISH-cryptic rearrangements (NGS+/FISH-) were detected in 7 cases (1 MYC ; 3 BCL2 ; 2 BCL6 ; 1 MYC::BCL6 ), mainly caused by small chromosomal insertions and inversions. NGS-/FISH+ were detected in 38 cases (14 MYC ; 4 BCL2 ; 20 BCL6 ).To clarify the cause of the inconsistencies, we selected 17 from the NGS-/FISH+ rearrangements for further whole genome sequencing (WGS), and all 17 rearrangements were detected with break points by WGS. These break points were all located outside the region covered by the probe of targeted NGS, and most (16/17) were located in the intergenic region. These results indicated that targeted NGS is a powerful clinical diagnostics tool for comprehensive MYC , BCL2, and BCL6 rearrangement detection. Compared to FISH, it has advantages in describing the break point distribution, identifying uncharacterized partners, and detecting FISH-cryptic rearrangements. However, the lack of high-sensitivity caused by insufficient probe coverage is the main limitation of the current technology.
Collapse
Affiliation(s)
- Yupeng Zeng
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Ran Wei
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Longlong Bao
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Yulan Qin
- Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Qianming Bai
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Chengli Yu
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Chen Chen
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Baohua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Junning Cao
- Department of Oncology, Shanghai Medical College
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| | - Qunling Zhang
- Department of Oncology, Shanghai Medical College
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College
- Institute of Pathology, Fudan University
| |
Collapse
|
2
|
Chen X, Zhang MY, Ji XL, Li R, Wang QX, Qu YQ. A novel nomogram model for lung adenocarcinoma subtypes based on RNA-modification regulatory genes. Heliyon 2024; 10:e33106. [PMID: 39022104 PMCID: PMC11252981 DOI: 10.1016/j.heliyon.2024.e33106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background In non-small cell lung cancer (NSCLC), lung adenocarcinoma (LUAD) is the most common subtype. RNA modification has become the frontier and hotspot of current tumor research. Results In this study, 109 genes that regulate RNA modifications were identified according to The Cancer Genome Atlas (TCGA). A differential gene expression analysis identified 46 differentially expressed RNA modification regulatory genes (DERRGs). LUAD samples were stratified into two distinct clusters based on the expression of these DERRGs. A significant correlation was observed between these clusters and patient survival rates, as well as clinical features. Furthermore, a four-DERRG signature (EIF3B, HNRNPC, IGF2BP1, and METTL3) developed using LASSO regression. According to the calculated risk scores from this signature, LUAD patients were categorized into high-risk and low-risk groups. Patients in the low-risk group exhibited a more favorable prognosis. A prognostic nomogram was crafted, integrating the four-DERRGs signature with clinical parameters. The nomogram was revealed that OS, age, clinical stage, immune cell infiltration, and immune checkpoint molecule expression were significantly linked to the OS of LUAD. GSEA analysis found that the DERRGs were primarily regulated immune pathways. Conclusions This study developed four DERRGs signatures and formulated a nomogram model for precise prognosis estimation in LUAD patients. The study's insights are instrumental for advancing diagnosis, prognosis, and therapeutic strategies for LUAD.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pulmonary and Critical Care Medicine, Tai'an City Central Hospital, Tai'an, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan, China
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Xiang Wang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Liu Y, Shen L, Li Y, Sun X, Liang L, Jiang S, Zhang Z, Tang X, Tao Y, Xie L, Jiang Y, Cong L. ETS1-mediated Regulation of SOAT1 Enhances the Malignant Phenotype of Oral Squamous Cell Carcinoma and Induces Tumor-associated Macrophages M2-like Polarization. Int J Biol Sci 2024; 20:3372-3392. [PMID: 38993570 PMCID: PMC11234219 DOI: 10.7150/ijbs.93815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive cancer that poses a substantial threat to human life and quality of life globally. Lipid metabolism reprogramming significantly influences tumor development, affecting not only tumor cells but also tumor-associated macrophages (TAMs) infiltration. SOAT1, a critical enzyme in lipid metabolism, holds high prognostic value in various cancers. This study revealed that SOAT1 is highly expressed in OSCC tissues and positively correlated with M2 TAMs infiltration. Increased SOAT1 expression enhanced the capabilities of cell proliferation, tumor sphere formation, migration, and invasion in OSCC cells, upregulated the SREBP1-regulated adipogenic pathway, activated the PI3K/AKT/mTOR pathway and promoted M2-like polarization of TAMs, thereby contributing to OSCC growth both in vitro and in vivo. Additionally, we explored the upstream transcription factors that regulate SOAT1 and discovered that ETS1 positively regulates SOAT1 expression levels. Knockdown of ETS1 effectively inhibited the malignant phenotype of OSCC cells, whereas restoring SOAT1 expression significantly mitigated this suppression. Based on these findings, we suggest that SOAT1 is regulated by ETS1 and plays a pivotal role in the development of OSCC by facilitating lipid metabolism and M2-like polarization of TAMs. We propose that SOAT1 is a promising target for OSCC therapy with tremendous potential.
Collapse
Affiliation(s)
- Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Li Shen
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Ziyun Zhang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Xingjie Tang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Li Xie
- Department of Head and Neck Surgery, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410013 Hunan, China
| |
Collapse
|
4
|
Guo Y, Cen K, Yang S, Mai Y, Hong K. Development and validation of an inflammatory response-related signature in triple negative breast cancer for predicting prognosis and immunotherapy. Front Oncol 2023; 13:1175000. [PMID: 37397391 PMCID: PMC10311032 DOI: 10.3389/fonc.2023.1175000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Inflammation is one of the most important characteristics of tumor tissue. Signatures based on inflammatory response-related genes (IRGs) can predict prognosis and treatment response in a variety of tumors. However, the clear function of IRGs in the triple negative breast cancer (TNBC) still needs to be explored. Methods IRGs clusters were discovered via consensus clustering, and the prognostic differentially expressed genes (DEGs) across clusters were utilized to develop a signature using a least absolute shrinkage and selection operator (LASSO). Verification analyses were conducted to show the robustness of the signature. The expression of risk genes was identified by RT-qPCR. Lastly, we formulated a nomogram to improve the clinical efficacy of our predictive tool. Results The IRGs signature, comprised of four genes, was developed and was shown to be highly correlated with the prognoses of TNBC patients. In contrast with the performance of the other individual predictors, we discovered that the IRGs signature was remarkably superior. Also, the ImmuneScores were elevated in the low-risk group. The immune cell infiltration showed significant difference between the two groups, as did the expression of immune checkpoints. Conclusion The IRGs signature could act as a biomarker and provide a momentous reference for individual therapy of TNBC.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Kenan Cen
- Department of Geriatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shi Yang
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yifeng Mai
- Department of Geriatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Kai Hong
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Guo Y, Wu Z, Cen K, Bai Y, Dai Y, Mai Y, Hong K, Qu L. Establishment and validation of a ubiquitination-related gene signature associated with prognosis in pancreatic duct adenocarcinoma. Front Immunol 2023; 14:1171811. [PMID: 37359528 PMCID: PMC10289160 DOI: 10.3389/fimmu.2023.1171811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Patients with pancreatic duct adenocarcinoma (PDAC) have varied prognoses that depend on numerous variables. However, additional research is required to uncover the latent impact of ubiquitination-related genes (URGs) on determining PDAC patients' prognoses. Methods The URGs clusters were discovered via consensus clustering, and the prognostic differentially expressed genes (DEGs) across clusters were utilized to develop a signature using a least absolute shrinkage and selection operator (LASSO) regression analysis of data from TCGA-PAAD. Verification analyses were conducted across TCGA-PAAD, GSE57495 and ICGC-PACA-AU to show the robustness of the signature. RT-qPCR was used to verify the expression of risk genes. Lastly, we formulated a nomogram to improve the clinical efficacy of our predictive tool. Results The URGs signature, comprised of three genes, was developed and was shown to be highly correlated with the prognoses of PAAD patients. The nomogram was established by combining the URGs signature with clinicopathological characteristics. We discovered that the URGs signature was remarkably superior than other individual predictors (age, grade, T stage, et al). Also, the immune microenvironment analysis indicated that ESTIMATEscore, ImmuneScores, and StromalScores were elevated in the low-risk group. The immune cells that infiltrated the tissues were different between the two groups, as did the expression of immune-related genes. Conclusion The URGs signature could act as the biomarker of prognosis and selecting appropriate therapeutic drugs for PDAC patients.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhixuan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenan Cen
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongheng Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Dai
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yifeng Mai
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Liangchen Qu
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
6
|
Xu Y, Ren X, Jiang T, Lv S, Gao K, Liu Y, Yan Y. Circulating tumor cells (CTCs) and hTERT gene expression in CTCs for radiotherapy effect with lung cancer. BMC Cancer 2023; 23:475. [PMID: 37226235 DOI: 10.1186/s12885-023-10979-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are important biological indicators of the lung cancer prognosis, and CTC counting and typing may provide helpful biological information for the diagnosis and treatment of lung cancer. METHODS The CTC count in blood before and after radiotherapy was detected by the CanPatrol™ CTC analysis system, and the CTC subtypes and the expression of hTERT before and after radiotherapy were detected by multiple in situ hybridization. The CTC count was calculated as the number of cells per 5 mL of blood. RESULTS The CTC positivity rate in patients with tumors before radiotherapy was 98.44%. Epithelial-mesenchymal CTCs (EMCTCs) were more common in patients with lung adenocarcinoma and squamous carcinoma than in patients with small cell lung cancer (P = 0.027). The total CTCs (TCTCs), EMCTCs, and mesenchymal CTCs (MCTCs) counts were significantly higher in patients with TNM stage III and IV tumors (P < 0.001, P = 0.005, and P < 0.001, respectively). The TCTCs and MCTCs counts were significantly higher in patients with an ECOG score of > 1 (P = 0.022 and P = 0.024, respectively). The TCTCs and EMCTCs counts before and after radiotherapy affected the overall response rate (ORR) (P < 0.05). TCTCs and ECTCs with positive hTERT expression were associated with the ORR of radiotherapy (P = 0.002 and P = 0.038, respectively), as were TCTCs with high hTERT expression (P = 0.012). ECOG score (P = 0.006) and post-radiation TCTCs count (P = 0.011) were independent factors for progression-free survival (PFS) and TNM stage (P = 0.054) and pre-radiation EMCTCs count (P = 0.009) were independent factors of overall survival (OS). CONCLUSION This study showed a high rate of positive CTC detection in patients with lung cancer, and the number, subtype, and hTERT-positive expression of CTCs were closely related to patients' ORR, PFS, and OS with radiotherapy. EMCTCs, hTERT-positive expression of CTCs are expected to be important biological indicators for predicting radiotherapy efficacy and the prognosis in patients with lung cancer. These results may be useful in improving disease stratification for future clinical trials and may help in clinical decision-making.
Collapse
Affiliation(s)
- Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Xue Ren
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Tong Jiang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Shuang Lv
- Shandong Province Heze Municipal Hospital, Heze, 274000, China
| | - Kuanke Gao
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China
| | - Yunen Liu
- Shenyang Medical College, No. 146 Road, Huanghe South Street, Huanggu District, Shenyang, 110034, China.
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang, l10016, China.
| |
Collapse
|
7
|
He H, Liang L, Huang J, Jiang S, Liu Y, Sun X, Li Y, Cong L, Jiang Y. KIF20A is associated with clinical prognosis and synergistic effect of gemcitabine combined with ferroptosis inducer in lung adenocarcinoma. Front Pharmacol 2022; 13:1007429. [PMID: 36225575 PMCID: PMC9549118 DOI: 10.3389/fphar.2022.1007429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Gemcitabine (GEM), an antimetabolite that terminates DNA synthesis, is commonly used in the treatment of cancers including lung adenocarcinoma (LUAD). However, downregulation of sensitivity limits the therapeutic effect. Ferroptosis as the new form of regulated cell death has been shown to have great potential for cancer treatment with chemoresistance. Here, three genes with both ferroptosis and GEM-response-associated features were screened from RNA sequencing and public data for constructing an independent risk model. LUAD patients with different risk scores had differences in mutational landscape, gene enrichment pathways, and drug sensitivity. By Cell Counting Kit-8 assay, flow cytometry, and colony forming assay, we demonstrate that GEM and ferroptosis inducer (FIN) imidazole Ketone Erastin had a synergistic combined anti-proliferative effect on LUAD cells and knockdown of KIF20A (the core gene of our model) further enhanced cell death in vitro by inducing ferroptosis. In conclusion, we identified a link between ferroptosis and GEM response in LUAD cells and developed a robust signature that can effectively classify LUAD patients into subgroups with different overall survival. For LUAD, the combined treatment modality of GEM and FIN is potentially effective and KIF20A may be a new therapeutic target.
Collapse
Affiliation(s)
- Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, Hunan, China
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
- *Correspondence: Yiqun Jiang,
| |
Collapse
|
8
|
TIAM2 Contributes to Osimertinib Resistance, Cell Motility, and Tumor-Associated Macrophage M2-like Polarization in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms231810415. [PMID: 36142328 PMCID: PMC9499457 DOI: 10.3390/ijms231810415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Osimertinib-based therapy effectively improves the prognosis of lung adenocarcinoma (LUAD) patients with epidermal growth factor receptor mutations. However, patients will have cancer progression after approximately one year due to the occurrence of drug resistance. Extensive evidence has revealed that lipid metabolism and tumor-associated macrophage (TAM) are associated with drug resistance, which deserves further exploration. Methods: An osimertinib resistance index (ORi) was built to investigate the link between lipid metabolism and osimertinib resistance. The ORi was constructed and validated using TCGA and GEO data, and the relationship between ORi and immune infiltration was discussed. Weighted gene co-expression network analysis based on the M2/M1 macrophage ratio determined the hub gene TIAM2 and the biological function of TIAM2 in LUAD was verified in vitro. Results: ORi based on nine lipid metabolism-related genes was successfully constructed, which could accurately reflect the resistance of LUAD patients to osimertinib, predict the prognosis, and correlate with M2-like TAM. Additionally, TIAM2 was found to increase osimertinib tolerance, enhance cell motility, and promote M2-like TAM polarization in LUAD. Conclusions: The lipid metabolism gene is strongly connected with osimertinib resistance. TIAM2 contributes to osimertinib resistance, enhances cell motility, and induces M2-like TAM polarization in LUAD.
Collapse
|