1
|
Alahdab F, Saad MB, Ahmed AI, Al Tashi Q, Aminu M, Han Y, Moody JB, Murthy VL, Wu J, Al-Mallah MH. Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms. Cell Rep Med 2024; 5:101746. [PMID: 39326409 PMCID: PMC11513811 DOI: 10.1016/j.xcrm.2024.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET) and 17,649 ECG-single-photon emission computed tomography (SPECT) data pairs, the ML model is trained with a swarm intelligence approach and support vector regression (SVR). The model achieves a receiver-operator curve (ROC) area under the curve (AUC) of 0.83, with a sensitivity and specificity of 0.75. An ECG-MFR value below 2 is significantly associated with MACE, with hazard ratios (HRs) of 3.85 and 3.70 in the discovery and validation phases, respectively. The model's C-statistic is 0.76, with a net reclassification improvement (NRI) of 0.35. Validated in an independent cohort, the ML model using ECG data offers superior MACE prediction compared to baseline clinical models, highlighting its potential for risk stratification in patients with coronary artery disease (CAD) using the accessible 12-lead ECG.
Collapse
Affiliation(s)
- Fares Alahdab
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA; Departments of Biomedical Informatics, Biostatistics, Epidemiology, and Cardiology, University of Missouri, Columbia, MO
| | - Maliazurina Binti Saad
- Department of Imaging Physics, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Qasem Al Tashi
- Department of Imaging Physics, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Yushui Han
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA
| | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI 48108, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Medicine, and Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI, USA
| | - Jia Wu
- Department of Imaging Physics, Division of Diagnostic Imaging, MD Anderson Cancer Center, Houston, TX, USA. //
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX, USA.
| |
Collapse
|
2
|
Rai HM, Yoo J, Dashkevych S. GAN-SkipNet: A Solution for Data Imbalance in Cardiac Arrhythmia Detection Using Electrocardiogram Signals from a Benchmark Dataset. MATHEMATICS 2024; 12:2693. [DOI: 10.3390/math12172693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Electrocardiography (ECG) plays a pivotal role in monitoring cardiac health, yet the manual analysis of ECG signals is challenging due to the complex task of identifying and categorizing various waveforms and morphologies within the data. Additionally, ECG datasets often suffer from a significant class imbalance issue, which can lead to inaccuracies in detecting minority class samples. To address these challenges and enhance the effectiveness and efficiency of cardiac arrhythmia detection from imbalanced ECG datasets, this study proposes a novel approach. This research leverages the MIT-BIH arrhythmia dataset, encompassing a total of 109,446 ECG beats distributed across five classes following the Association for the Advancement of Medical Instrumentation (AAMI) standard. Given the dataset’s inherent class imbalance, a 1D generative adversarial network (GAN) model is introduced, incorporating the Bi-LSTM model to synthetically generate the two minority signal classes, which represent a mere 0.73% fusion (F) and 2.54% supraventricular (S) of the data. The generated signals are rigorously evaluated for similarity to real ECG data using three key metrics: mean squared error (MSE), structural similarity index (SSIM), and Pearson correlation coefficient (r). In addition to addressing data imbalance, the work presents three deep learning models tailored for ECG classification: SkipCNN (a convolutional neural network with skip connections), SkipCNN+LSTM, and SkipCNN+LSTM+Attention mechanisms. To further enhance efficiency and accuracy, the test dataset is rigorously assessed using an ensemble model, which consistently outperforms the individual models. The performance evaluation employs standard metrics such as precision, recall, and F1-score, along with their average, macro average, and weighted average counterparts. Notably, the SkipCNN+LSTM model emerges as the most promising, achieving remarkable precision, recall, and F1-scores of 99.3%, which were further elevated to an impressive 99.60% through ensemble techniques. Consequently, with this innovative combination of data balancing techniques, the GAN-SkipNet model not only resolves the challenges posed by imbalanced data but also provides a robust and reliable solution for cardiac arrhythmia detection. This model stands poised for clinical applications, offering the potential to be deployed in hospitals for real-time cardiac arrhythmia detection, thereby benefiting patients and healthcare practitioners alike.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Serhii Dashkevych
- Department of Computer Science, Data Scientist, Vistula University, Stokłosy 3, 02-787 Warszawa, Poland
| |
Collapse
|
3
|
Moqurrab SA, Rai HM, Yoo J. HRIDM: Hybrid Residual/Inception-Based Deeper Model for Arrhythmia Detection from Large Sets of 12-Lead ECG Recordings. ALGORITHMS 2024; 17:364. [DOI: 10.3390/a17080364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Heart diseases such as cardiovascular and myocardial infarction are the foremost reasons of death in the world. The timely, accurate, and effective prediction of heart diseases is crucial for saving lives. Electrocardiography (ECG) is a primary non-invasive method to identify cardiac abnormalities. However, manual interpretation of ECG recordings for heart disease diagnosis is a time-consuming and inaccurate process. For the accurate and efficient detection of heart diseases from the 12-lead ECG dataset, we have proposed a hybrid residual/inception-based deeper model (HRIDM). In this study, we have utilized ECG datasets from various sources, which are multi-institutional large ECG datasets. The proposed model is trained on 12-lead ECG data from over 10,000 patients. We have compared the proposed model with several state-of-the-art (SOTA) models, such as LeNet-5, AlexNet, VGG-16, ResNet-50, Inception, and LSTM, on the same training and test datasets. To show the effectiveness of the computational efficiency of the proposed model, we have only trained over 20 epochs without GPU support and we achieved an accuracy of 50.87% on the test dataset for 27 categories of heart abnormalities. We found that our proposed model outperformed the previous studies which participated in the official PhysioNet/CinC Challenge 2020 and achieved fourth place as compared with the 41 official ranking teams. The result of this study indicates that the proposed model is an implying new method for predicting heart diseases using 12-lead ECGs.
Collapse
Affiliation(s)
- Syed Atif Moqurrab
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
4
|
Prusty MR, Pandey TN, Lekha PS, Lellapalli G, Gupta A. Scalar invariant transform based deep learning framework for detecting heart failures using ECG signals. Sci Rep 2024; 14:2633. [PMID: 38302520 PMCID: PMC10834984 DOI: 10.1038/s41598-024-53107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024] Open
Abstract
Heart diseases are leading to death across the globe. Exact detection and treatment for heart disease in its early stages could potentially save lives. Electrocardiogram (ECG) is one of the tests that take measures of heartbeat fluctuations. The deviation in the signals from the normal sinus rhythm and different variations can help detect various heart conditions. This paper presents a novel approach to cardiac disease detection using an automated Convolutional Neural Network (CNN) system. Leveraging the Scale-Invariant Feature Transform (SIFT) for unique ECG signal image feature extraction, our model classifies signals into three categories: Arrhythmia (ARR), Congestive Heart Failure (CHF), and Normal Sinus Rhythm (NSR). The proposed model has been evaluated using 96 Arrhythmia, 30 CHF, and 36 NSR ECG signals, resulting in a total of 162 images for classification. Our proposed model achieved 99.78% accuracy and an F1 score of 99.78%, which is among one of the highest in the models which were recorded to date with this dataset. Along with the SIFT, we also used HOG and SURF techniques individually and applied the CNN model which achieved 99.45% and 78% accuracy respectively which proved that the SIFT-CNN model is a well-trained and performed model. Notably, our approach introduces significant novelty by combining SIFT with a custom CNN model, enhancing classification accuracy and offering a fresh perspective on cardiac arrhythmia detection. This SIFT-CNN model performed exceptionally well and better than all existing models which are used to classify heart diseases.
Collapse
Affiliation(s)
- Manas Ranjan Prusty
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - Trilok Nath Pandey
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India.
| | - Pujala Shree Lekha
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - Gayatri Lellapalli
- School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| | - Annika Gupta
- School of Electrical Engineering, Vellore Institute of Technology, Chennai, 600127, Tamil Nadu, India
| |
Collapse
|
5
|
Development and Validation of Embedded Device for Electrocardiogram Arrhythmia Empowered with Transfer Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5054641. [PMID: 36268157 PMCID: PMC9578866 DOI: 10.1155/2022/5054641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022]
Abstract
With the emergence of the Internet of Things (IoT), investigation of different diseases in healthcare improved, and cloud computing helped to centralize the data and to access patient records throughout the world. In this way, the electrocardiogram (ECG) is used to diagnose heart diseases or abnormalities. The machine learning techniques have been used previously but are feature-based and not as accurate as transfer learning; the proposed development and validation of embedded device prove ECG arrhythmia by using the transfer learning (DVEEA-TL) model. This model is the combination of hardware, software, and two datasets that are augmented and fused and further finds the accuracy results in high proportion as compared to the previous work and research. In the proposed model, a new dataset is made by the combination of the Kaggle dataset and the other, which is made by taking the real-time healthy and unhealthy datasets, and later, the AlexNet transfer learning approach is applied to get a more accurate reading in terms of ECG signals. In this proposed research, the DVEEA-TL model diagnoses the heart abnormality in respect of accuracy during the training and validation stages as 99.9% and 99.8%, respectively, which is the best and more reliable approach as compared to the previous research in this field.
Collapse
|