1
|
Pan Z, Yu X, Wang W, Shen K, Chen J, Zhang Y, Huang R. Sestrin2 remedies neuroinflammatory response by inhibiting A1 astrocyte conversion via autophagy. J Neurochem 2024; 168:2640-2653. [PMID: 38761015 DOI: 10.1111/jnc.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Collapse
Affiliation(s)
- Zhenguo Pan
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, People's Hospital of Xiangshui County, Yancheng, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Kai Shen
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rongrong Huang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
2
|
Bertozzi G, Ferrara M, Di Fazio A, Maiese A, Delogu G, Di Fazio N, Tortorella V, La Russa R, Fineschi V. Oxidative Stress in Sepsis: A Focus on Cardiac Pathology. Int J Mol Sci 2024; 25:2912. [PMID: 38474158 DOI: 10.3390/ijms25052912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to analyze post-mortem human cardiac specimens, to verify and evaluate the existence or extent of oxidative stress in subjects whose cause of death has been traced to sepsis, through immunohistological oxidative/nitrosative stress markers. Indeed, in the present study, i-NOS, NOX2, and nitrotyrosine markers were higher expressed in the septic death group when compared to the control group, associated with also a significant increase in 8-OHdG, highlighting the pivotal role of oxidative stress in septic etiopathogenesis. In particular, 70% of cardiomyocyte nuclei from septic death specimens showed positivity for 8-OHdG. Furthermore, intense and massive NOX2-positive myocyte immunoreaction was noticed in the septic group, as nitrotyrosine immunostaining intense reaction was found in the cardiac cells. These results demonstrated a correlation between oxidative and nitrosative stress imbalance and the pathophysiology of cardiac dysfunction documented in cases of sepsis. Therefore, subsequent studies will focus on the expression of oxidative stress markers in other organs and tissues, as well as on the involvement of the intracellular pattern of apoptosis, to better clarify the complex pathogenesis of multi-organ failure, leading to support the rationale for including therapies targeting redox abnormalities in the management of septic patients.
Collapse
Affiliation(s)
| | - Michela Ferrara
- SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Aldo Di Fazio
- SIC Medicina Legale, Via Potito Petrone, 85100 Potenza, Italy
| | - Aniello Maiese
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Giuseppe Delogu
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Vittoria Tortorella
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| | - Raffaele La Russa
- Department of Clinical Medicine, Public Health, Life and Environment Science, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy
| |
Collapse
|