1
|
Al-Qazzaz NK, Alrahhal M, Jaafer SH, Ali SHBM, Ahmad SA. Automatic diagnosis of epileptic seizures using entropy-based features and multimodel deep learning approaches. Med Eng Phys 2024; 130:104206. [PMID: 39160030 DOI: 10.1016/j.medengphy.2024.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
Epilepsy is one of the most common brain diseases, characterised by repeated seizures that occur on a regular basis. During a seizure, a patient's muscles flex uncontrollably, causing a loss of mobility and balance, which can be harmful or even fatal. Developing an automatic approach for warning patients of oncoming seizures necessitates substantial research. Analyzing the electroencephalogram (EEG) output from the human brain's scalp region can help predict seizures. EEG data were analyzed to extract time domain features such as Hurst exponent (Hur), Tsallis entropy (TsEn), enhanced permutation entropy (impe), and amplitude-aware permutation entropy (AAPE). In order to automatically diagnose epileptic seizure in children from normal children, this study conducted two sessions. In the first session, the extracted features from the EEG dataset were classified using three machine learning (ML)-based models, including support vector machine (SVM), K nearest neighbor (KNN), or decision tree (DT), and in the second session, the dataset was classified using three deep learning (DL)-based recurrent neural network (RNN) classifiers in The EEG dataset was obtained from the Neurology Clinic of the Ibn Rushd Training Hospital. In this regard, extensive explanations and research from the time domain and entropy characteristics demonstrate that employing GRU, LSTM, and BiLSTM RNN deep learning classifiers on the All-time-entropy fusion feature improves the final classification results.
Collapse
Affiliation(s)
- Noor Kamal Al-Qazzaz
- Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, 47146, Iraq.
| | - Maher Alrahhal
- Department of Computer Science and Engineering, Jawaharlal Nehru Technological University Hyderabad, University College of Engineering, Science and Technology Hyderabad, Telangana, India.
| | - Sumai Hamad Jaafer
- Medical Laboratory Department, Erbil Medical Institute, Erbil Polytechnic University, Kirkuk Road, Hadi Chawshli Street, Kurdistan Region, Erbil, Iraq.
| | - Sawal Hamid Bin Mohd Ali
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia; Centre of Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia.
| | - Siti Anom Ahmad
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia; Malaysian Research Institute of Ageing (MyAgeing)TM, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia.
| |
Collapse
|
2
|
Lv H, Zhang Y, Xiao T, Wang Z, Wang S, Feng H, Zhao X, Zhao Y. Seizure Detection Based on Lightweight Inverted Residual Attention Network. Int J Neural Syst 2024; 34:2450042. [PMID: 38818805 DOI: 10.1142/s0129065724500424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Timely and accurately seizure detection is of great importance for the diagnosis and treatment of epilepsy patients. Existing seizure detection models are often complex and time-consuming, highlighting the urgent need for lightweight seizure detection. Additionally, existing methods often neglect the key characteristic channels and spatial regions of electroencephalography (EEG) signals. To solve these issues, we propose a lightweight EEG-based seizure detection model named lightweight inverted residual attention network (LRAN). Specifically, we employ a four-stage inverted residual mobile block (iRMB) to effectively extract the hierarchical features from EEG. The convolutional block attention module (CBAM) is introduced to make the model focus on important feature channels and spatial information, thereby enhancing the discrimination of the learned features. Finally, convolution operations are used to capture local information and spatial relationships between features. We conduct intra-subject and inter-subject experiments on a publicly available dataset. Intra-subject experiments obtain 99.25% accuracy in segment-based detection and 0.36/h false detection rate (FDR) in event-based detection, respectively. Inter-subject experiments obtain 84.32% accuracy. Both sets of experiments maintain high classification accuracy with a low number of parameters, where the multiply accumulate operations (MACs) are 25.86[Formula: see text]M and the number of parameters is 0.57[Formula: see text]M.
Collapse
Affiliation(s)
- Hongbin Lv
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yongfeng Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Tiantian Xiao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Ziwei Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Shuai Wang
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Hailing Feng
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xianxun Zhao
- Department of Automotive Engineering, Heze Engineering Technician College, Heze 274000, P. R. China
| | - Yanna Zhao
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
3
|
Georgis-Yap Z, Popovic MR, Khan SS. Supervised and Unsupervised Deep Learning Approaches for EEG Seizure Prediction. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:286-312. [PMID: 38681760 PMCID: PMC11052752 DOI: 10.1007/s41666-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 05/01/2024]
Abstract
Epilepsy affects more than 50 million people worldwide, making it one of the world's most prevalent neurological diseases. The main symptom of epilepsy is seizures, which occur abruptly and can cause serious injury or death. The ability to predict the occurrence of an epileptic seizure could alleviate many risks and stresses people with epilepsy face. We formulate the problem of detecting preictal (or pre-seizure) with reference to normal EEG as a precursor to incoming seizure. To this end, we developed several supervised deep learning approaches model to identify preictal EEG from normal EEG. We further develop novel unsupervised deep learning approaches to train the models on only normal EEG, and detecting pre-seizure EEG as an anomalous event. These deep learning models were trained and evaluated on two large EEG seizure datasets in a person-specific manner. We found that both supervised and unsupervised approaches are feasible; however, their performance varies depending on the patient, approach and architecture. This new line of research has the potential to develop therapeutic interventions and save human lives.
Collapse
Affiliation(s)
- Zakary Georgis-Yap
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Milos R. Popovic
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| | - Shehroz S. Khan
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550, University Avenue, Toronto, M5G 2A2 Ontario Canada
- Institute of Biomedical Engineering, University of Toronto, 64 College St., Toronto, M5S 3G9 Ontario Canada
| |
Collapse
|
4
|
Chang RSK, Nguyen S, Chen Z, Foster E, Kwan P. Role of machine learning in the management of epilepsy: a systematic review protocol. BMJ Open 2024; 14:e079785. [PMID: 38272549 PMCID: PMC10823996 DOI: 10.1136/bmjopen-2023-079785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Machine learning is a rapidly expanding field and is already incorporated into many aspects of medicine including diagnostics, prognostication and clinical decision-support tools. Epilepsy is a common and disabling neurological disorder, however, management remains challenging in many cases, despite expanding therapeutic options. We present a systematic review protocol to explore the role of machine learning in the management of epilepsy. METHODS AND ANALYSIS This protocol has been drafted with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for Protocols. A literature search will be conducted in databases including MEDLINE, Embase, Scopus and Web of Science. A PRISMA flow chart will be constructed to summarise the study workflow. As the scope of this review is the clinical application of machine learning, the selection of papers will be focused on studies directly related to clinical decision-making in management of epilepsy, specifically the prediction of response to antiseizure medications, development of drug-resistant epilepsy, and epilepsy surgery and neuromodulation outcomes. Data will be extracted following the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies checklist. Prediction model Risk Of Bias ASsessment Tool will be used for the quality assessment of the included studies. Syntheses of quantitative data will be presented in narrative format. ETHICS AND DISSEMINATION As this study is a systematic review which does not involve patients or animals, ethics approval is not required. The results of the systematic review will be submitted to peer-review journals for publication and presented in academic conferences. PROSPERO REGISTRATION NUMBER CRD42023442156.
Collapse
Affiliation(s)
- Richard Shek-Kwan Chang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Shani Nguyen
- Monash University Faculty of Medicine Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Methods in Medicine CAM. Retracted: Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9853636. [PMID: 38124919 PMCID: PMC10732944 DOI: 10.1155/2023/9853636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/7751263.].
Collapse
|
6
|
Palanisamy P, Urooj S, Arunachalam R, Lay-Ekuakille A. A Novel Prognostic Model Using Chaotic CNN with Hybridized Spoofing for Enhancing Diagnostic Accuracy in Epileptic Seizure Prediction. Diagnostics (Basel) 2023; 13:3382. [PMID: 37958278 PMCID: PMC10650532 DOI: 10.3390/diagnostics13213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Epileptic seizure detection has undergone progressive advancements since its conception in the 1970s. From proof-of-concept experiments in the latter part of that decade, it has now become a vibrant area of clinical and laboratory research. In an effort to bring this technology closer to practical application in human patients, this study introduces a customized approach to selecting electroencephalogram (EEG) features and electrode positions for seizure prediction. The focus is on identifying precursors that occur within 10 min of the onset of abnormal electrical activity during a seizure. However, there are security concerns related to safeguarding patient EEG recordings against unauthorized access and network-based attacks. Therefore, there is an urgent need for an efficient prediction and classification method for encrypted EEG data. This paper presents an effective system for analyzing and recognizing encrypted EEG information using Arnold transform algorithms, chaotic mapping, and convolutional neural networks (CNNs). In this system, the EEG time series from each channel is converted into a 2D spectrogram image, which is then encrypted using chaotic algorithms. The encrypted data is subsequently processed by CNNs coupled with transfer learning (TL) frameworks. To optimize the fusion parameters of the ensemble learning classifiers, a hybridized spoofing optimization method is developed by combining the characteristics of corvid and gregarious-seeking agents. The evaluation of the model's effectiveness yielded the following results: 98.9 ± 0.3% accuracy, 98.2 ± 0.7% sensitivity, 98.6 ± 0.6% specificity, 98.6 ± 0.6% precision, and an F1 measure of 98.9 ± 0.6%. When compared with other state-of-the-art techniques applied to the same dataset, this novel strategy demonstrated one of the most effective seizure detection systems, as evidenced by these results.
Collapse
Affiliation(s)
- Preethi Palanisamy
- Department of Computer Science and Engineering, Kongunadu College of Engineering and Technology, Trichy 621215, India
| | - Shabana Urooj
- Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rajesh Arunachalam
- Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India;
| | - Aime Lay-Ekuakille
- Dipartimento d’Ingegneria dell’Innovazione (DII) (Department of Innovation Engineering), Universita del Salento (University of Salento), Via Monteroni, Ed. “Corpo O”, 73100 Leece, Italy
| |
Collapse
|
7
|
Ji H, Xu T, Xue T, Xu T, Yan Z, Liu Y, Chen B, Jiang W. An effective fusion model for seizure prediction: GAMRNN. Front Neurosci 2023; 17:1246995. [PMID: 37674519 PMCID: PMC10477703 DOI: 10.3389/fnins.2023.1246995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
The early prediction of epileptic seizures holds paramount significance in patient care and medical research. Extracting useful spatial-temporal features to facilitate seizure prediction represents a primary challenge in this field. This study proposes GAMRNN, a novel methodology integrating a dual-layer gated recurrent unit (GRU) model with a convolutional attention module. GAMRNN aims to capture intricate spatial-temporal characteristics by highlighting informative feature channels and spatial pattern dynamics. We employ the Lion optimization algorithm to enhance the model's generalization capability and predictive accuracy. Our evaluation of GAMRNN on the widely utilized CHB-MIT EEG dataset demonstrates its effectiveness in seizure prediction. The results include an impressive average classification accuracy of 91.73%, sensitivity of 88.09%, specificity of 92.09%, and a low false positive rate of 0.053/h. Notably, GAMRNN enables early seizure prediction with a lead time ranging from 5 to 35 min, exhibiting remarkable performance improvements compared to similar prediction models.
Collapse
Affiliation(s)
- Hong Ji
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Ting Xu
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Tao Xue
- Shaanxi Provincial Key Laboratory of Fashion Design Intelligence, Xi'an Polytechnic University, Xi'an, China
| | - Tao Xu
- School of Software, Northwestern Polytechnical University, Xi'an, China
| | - Zhiqiang Yan
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yonghong Liu
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Badong Chen
- Institute of Artistic Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China
| | - Wen Jiang
- Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Saemaldahr R, Ilyas M. Patient-Specific Preictal Pattern-Aware Epileptic Seizure Prediction with Federated Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:6578. [PMID: 37514873 PMCID: PMC10385318 DOI: 10.3390/s23146578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Electroencephalography (EEG) signals are the primary source for discriminating the preictal from the interictal stage, enabling early warnings before the seizure onset. Epileptic siezure prediction systems face significant challenges due to data scarcity, diversity, and privacy. This paper proposes a three-tier architecture for epileptic seizure prediction associated with the Federated Learning (FL) model, which is able to achieve enhanced capability by utilizing a significant number of seizure patterns from globally distributed patients while maintaining data privacy. The determination of the preictal state is influenced by global and local model-assisted decision making by modeling the two-level edge layer. The Spiking Encoder (SE), integrated with the Graph Convolutional Neural Network (Spiking-GCNN), works as the local model trained using a bi-timescale approach. Each local model utilizes the aggregated seizure knowledge obtained from the different medical centers through FL and determines the preictal probability in the coarse-grained personalization. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is utilized in fine-grained personalization to recognize epileptic seizure patients by examining the outcomes of the FL model, heart rate variability features, and patient-specific clinical features. Thus, the proposed approach achieved 96.33% sensitivity and 96.14% specificity when tested on the CHB-MIT EEG dataset when modeling was performed using the bi-timescale approach and Spiking-GCNN-based epileptic pattern learning. Moreover, the adoption of federated learning greatly assists the proposed system, yielding a 96.28% higher accuracy as a result of addressing data scarcity.
Collapse
Affiliation(s)
- Raghdah Saemaldahr
- Department of Computer Science, Taibah University, Medina 42353, Saudi Arabia
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mohammad Ilyas
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
9
|
Singh A, Velagala VR, Kumar T, Dutta RR, Sontakke T. The Application of Deep Learning to Electroencephalograms, Magnetic Resonance Imaging, and Implants for the Detection of Epileptic Seizures: A Narrative Review. Cureus 2023; 15:e42460. [PMID: 37637568 PMCID: PMC10457132 DOI: 10.7759/cureus.42460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures affecting millions worldwide. Medically intractable seizures in epilepsy patients are not only detrimental to the quality of life but also pose a significant threat to their safety. Outcomes of epilepsy therapy can be improved by early detection and intervention during the interictal window period. Electroencephalography is the primary diagnostic tool for epilepsy, but accurate interpretation of seizure activity is challenging and highly time-consuming. Machine learning (ML) and deep learning (DL) algorithms enable us to analyze complex EEG data, which can not only help us diagnose but also locate epileptogenic zones and predict medical and surgical treatment outcomes. DL models such as convolutional neural networks (CNNs), inspired by visual processing, can be used to classify EEG activity. By applying preprocessing techniques, signal quality can be enhanced by denoising and artifact removal. DL can also be incorporated into the analysis of magnetic resonance imaging (MRI) data, which can help in the localization of epileptogenic zones in the brain. Proper detection of these zones can help in good neurosurgical outcomes. Recent advancements in DL have facilitated the implementation of these systems in neural implants and wearable devices, allowing for real-time seizure detection. This has the potential to transform the management of drug-refractory epilepsy. This review explores the application of ML and DL techniques to Electroencephalograms (EEGs), MRI, and wearable devices for epileptic seizure detection. This review briefly explains the fundamentals of both artificial intelligence (AI) and DL, highlighting these systems' potential advantages and undeniable limitations.
Collapse
Affiliation(s)
- Arihant Singh
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Vivek R Velagala
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tanishq Kumar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Rajoshee R Dutta
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tushar Sontakke
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Wijaya A, Setiawan NA, Ahmad AH, Zakaria R, Othman Z. Electroencephalography and mild cognitive impairment research: A scoping review and bibliometric analysis (ScoRBA). AIMS Neurosci 2023; 10:154-171. [PMID: 37426780 PMCID: PMC10323261 DOI: 10.3934/neuroscience.2023012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Mild cognitive impairment (MCI) is often considered a precursor to Alzheimer's disease (AD) and early diagnosis may help improve treatment effectiveness. To identify accurate MCI biomarkers, researchers have utilized various neuroscience techniques, with electroencephalography (EEG) being a popular choice due to its low cost and better temporal resolution. In this scoping review, we analyzed 2310 peer-reviewed articles on EEG and MCI between 2012 and 2022 to track the research progress in this field. Our data analysis involved co-occurrence analysis using VOSviewer and a Patterns, Advances, Gaps, Evidence of Practice, and Research Recommendations (PAGER) framework. We found that event-related potentials (ERP), EEG, epilepsy, quantitative EEG (QEEG), and EEG-based machine learning were the primary research themes. The study showed that ERP/EEG, QEEG, and EEG-based machine learning frameworks provide high-accuracy detection of seizure and MCI. These findings identify the main research themes in EEG and MCI and suggest promising avenues for future research in this field.
Collapse
Affiliation(s)
- Adi Wijaya
- Department of Health Information Management, Universitas Indonesia Maju, Jakarta, Indonesia
| | - Noor Akhmad Setiawan
- Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Asma Hayati Ahmad
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Rahimah Zakaria
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| | - Zahiruddin Othman
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kota Bharu, Malaysia
| |
Collapse
|
11
|
Al-hajjar ALN, Al-Qurabat AKM. An overview of machine learning methods in enabling IoMT-based epileptic seizure detection. THE JOURNAL OF SUPERCOMPUTING 2023; 79:1-48. [PMID: 37359338 PMCID: PMC10123593 DOI: 10.1007/s11227-023-05299-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/28/2023]
Abstract
The healthcare industry is rapidly automating, in large part because of the Internet of Things (IoT). The sector of the IoT devoted to medical research is sometimes called the Internet of Medical Things (IoMT). Data collecting and processing are the fundamental components of all IoMT applications. Machine learning (ML) algorithms must be included into IoMT immediately due to the vast quantity of data involved in healthcare and the value that precise forecasts have. In today's world, together, IoMT, cloud services, and ML techniques have become effective tools for solving many problems in the healthcare sector, such as epileptic seizure monitoring and detection. One of the biggest hazards to people's lives is epilepsy, a lethal neurological condition that has become a global issue. To prevent the deaths of thousands of epileptic patients each year, there is a critical necessity for an effective method for detecting epileptic seizures at their earliest stage. Numerous medical procedures, including epileptic monitoring, diagnosis, and other procedures, may be carried out remotely with the use of IoMT, which will reduce healthcare expenses and improve services. This article seeks to act as both a collection and a review of the different cutting-edge ML applications for epilepsy detection that are presently being combined with IoMT.
Collapse
Affiliation(s)
| | - Ali Kadhum M. Al-Qurabat
- Department of Computer Science, College of Science for Women, University of Babylon, Babylon, Iraq
| |
Collapse
|
12
|
Lopes F, Leal A, Pinto MF, Dourado A, Schulze-Bonhage A, Dümpelmann M, Teixeira C. Removing artefacts and periodically retraining improve performance of neural network-based seizure prediction models. Sci Rep 2023; 13:5918. [PMID: 37041158 PMCID: PMC10090199 DOI: 10.1038/s41598-023-30864-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 04/13/2023] Open
Abstract
The development of seizure prediction models is often based on long-term scalp electroencephalograms (EEGs) since they capture brain electrical activity, are non-invasive, and come at a relatively low-cost. However, they suffer from major shortcomings. First, long-term EEG is usually highly contaminated with artefacts. Second, changes in the EEG signal over long intervals, known as concept drift, are often neglected. We evaluate the influence of these problems on deep neural networks using EEG time series and on shallow neural networks using widely-used EEG features. Our patient-specific prediction models were tested in 1577 hours of continuous EEG, containing 91 seizures from 41 patients with temporal lobe epilepsy who were undergoing pre-surgical monitoring. Our results showed that cleaning EEG data, using a previously developed artefact removal method based on deep convolutional neural networks, improved prediction performance. We also found that retraining the models over time reduced false predictions. Furthermore, the results show that although deep neural networks processing EEG time series are less susceptible to false alarms, they may need more data to surpass feature-based methods. These findings highlight the importance of robust data denoising and periodic adaptation of seizure prediction models.
Collapse
Affiliation(s)
- Fábio Lopes
- Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.
- Epilepsy Center, Department Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Adriana Leal
- Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - Mauro F Pinto
- Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - António Dourado
- Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Department Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Department Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - César Teixeira
- Center for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Patient-specific method for predicting epileptic seizures based on DRSN-GRU. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Dastgoshadeh M, Rabiei Z. Detection of epileptic seizures through EEG signals using entropy features and ensemble learning. Front Hum Neurosci 2023; 16:1084061. [PMID: 36875740 PMCID: PMC9976189 DOI: 10.3389/fnhum.2022.1084061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Epilepsy is a disorder of the central nervous system that is often accompanied by recurrent seizures. World health organization (WHO) estimated that more than 50 million people worldwide suffer from epilepsy. Although electroencephalogram (EEG) signals contain vital physiological and pathological information of brain and they are a prominent medical tool for detecting epileptic seizures, visual interpretation of such tools is time-consuming. Since early diagnosis of epilepsy is essential to control seizures, we present a new method using data mining and machine learning techniques to diagnose epileptic seizures automatically. Methods The proposed detection system consists of three main steps: In the first step, the input signals are pre-processed by discrete wavelet transform (DWT) and sub-bands containing useful information are extracted. In the second step, the features of each sub-band are extracted by approximate entropy (ApEn) and sample entropy (SampEn) and then these features are ranked by ANOVA test. Finally, feature selection is done by the FSFS technique. In the third step, three algorithms are used to classify seizures: Least squared support vector machine (LS-SVM), K nearest neighbors (KNN) and Naive Bayes model (NB). Results and discussion The average accuracy for both LS-SVM and NB was 98% and it was 94.5% for KNN, while the results show that the proposed method can detect epileptic seizures with an average accuracy of 99.5%, 99.01% of sensitivity and 100% of specificity which show an improvement over most similar methods and can be used as an effective tool in diagnosing this complication.
Collapse
Affiliation(s)
| | - Zahra Rabiei
- Department of Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| |
Collapse
|
15
|
Ren Z, Han X, Wang B. The performance evaluation of the state-of-the-art EEG-based seizure prediction models. Front Neurol 2022; 13:1016224. [PMID: 36504642 PMCID: PMC9732735 DOI: 10.3389/fneur.2022.1016224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The recurrent and unpredictable nature of seizures can lead to unintentional injuries and even death. The rapid development of electroencephalogram (EEG) and Artificial Intelligence (AI) technologies has made it possible to predict seizures in real-time through brain-machine interfaces (BCI), allowing advanced intervention. To date, there is still much room for improvement in predictive seizure models constructed by EEG using machine learning (ML) and deep learning (DL). But, the most critical issue is how to improve the performance and generalization of the model, which involves some confusing conceptual and methodological issues. This review focuses on analyzing several factors affecting the performance of seizure prediction models, focusing on the aspects of post-processing, seizure occurrence period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore, this study presents some new directions and suggestions for building high-performance prediction models in the future. We aimed to clarify the concept for future research in related fields and improve the performance of prediction models to provide a theoretical basis for future applications of wearable seizure detection devices.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiong Han
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China,*Correspondence: Xiong Han
| | - Bin Wang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
16
|
Li X, Tao S, Lhatoo SD, Cui L, Huang Y, Hampson JP, Zhang GQ. A multimodal clinical data resource for personalized risk assessment of sudden unexpected death in epilepsy. Front Big Data 2022; 5:965715. [PMID: 36059922 PMCID: PMC9428292 DOI: 10.3389/fdata.2022.965715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
Epilepsy affects ~2-3 million individuals in the United States, a third of whom have uncontrolled seizures. Sudden unexpected death in epilepsy (SUDEP) is a catastrophic and fatal complication of poorly controlled epilepsy and is the primary cause of mortality in such patients. Despite its huge public health impact, with a ~1/1,000 incidence rate in persons with epilepsy, it is an uncommon enough phenomenon to require multi-center efforts for well-powered studies. We developed the Multimodal SUDEP Data Resource (MSDR), a comprehensive system for sharing multimodal epilepsy data in the NIH funded Center for SUDEP Research. The MSDR aims at accelerating research to address critical questions about personalized risk assessment of SUDEP. We used a metadata-guided approach, with a set of common epilepsy-specific terms enforcing uniform semantic interpretation of data elements across three main components: (1) multi-site annotated datasets; (2) user interfaces for capturing, managing, and accessing data; and (3) computational approaches for the analysis of multimodal clinical data. We incorporated the process for managing dataset-specific data use agreements, evidence of Institutional Review Board review, and the corresponding access control in the MSDR web portal. The metadata-guided approach facilitates structural and semantic interoperability, ultimately leading to enhanced data reusability and scientific rigor. MSDR prospectively integrated and curated epilepsy patient data from seven institutions, and it currently contains data on 2,739 subjects and 10,685 multimodal clinical data files with different data formats. In total, 55 users registered in the current MSDR data repository, and 6 projects have been funded to apply MSDR in epilepsy research, including three R01 projects and three R21 projects.
Collapse
Affiliation(s)
- Xiaojin Li
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shiqiang Tao
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Samden D. Lhatoo
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Licong Cui
- Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States,School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yan Huang
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Johnson P. Hampson
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Guo-Qiang Zhang
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States,Texas Institute for Restorative Neurotechnologies, The University of Texas Health Science Center at Houston, Houston, TX, United States,School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States,*Correspondence: Guo-Qiang Zhang
| |
Collapse
|
17
|
Ahmed MIB, Alotaibi S, Atta-ur-Rahman, Dash S, Nabil M, AlTurki AO. A Review on Machine Learning Approaches in Identification of Pediatric Epilepsy. SN COMPUTER SCIENCE 2022; 3:437. [PMID: 35965953 PMCID: PMC9364307 DOI: 10.1007/s42979-022-01358-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/26/2022] [Indexed: 10/26/2022]
Abstract
Epilepsy is the second most common neurological disease after Alzheimer. It is a disorder of the brain which results in recurrent seizures. Though the epilepsy in general is considered as a serious disorder, its effects in children are rather dangerous. It is mainly because it reasons a slower rate of development and a failure to improve certain skills among such children. Seizures are the most common symptom of epilepsy. As a regular medical procedure, the specialists record brain activity using an electroencephalogram (EEG) to observe epileptic seizures. The detection of these seizures is performed by specialists, but the results might not be accurate and depend on the specialist's experience; therefore, automated detection of epileptic pediatric seizures might be an optimal solution. In this regard, several techniques have been investigated in the literature. This research aims to review the approaches to pediatric epilepsy seizures' identification especially those based on machine learning, in addition to the techniques applied on the CHB-MIT scalp EEG database of epileptic pediatric signals.
Collapse
Affiliation(s)
- Mohammed Imran Basheer Ahmed
- Department of Computer Engineering, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Shamsah Alotaibi
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Atta-ur-Rahman
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Sujata Dash
- Department of Computer Application, Maharaja Srirama Chandra Bhanj Deo University, Baripada, India
| | - Majed Nabil
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| | - Abdullah Omar AlTurki
- Department of Computer Science, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, 31441 Saudi Arabia
| |
Collapse
|
18
|
Ahmad I, Wang X, Zhu M, Wang C, Pi Y, Khan JA, Khan S, Samuel OW, Chen S, Li G. EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6486570. [PMID: 35755757 PMCID: PMC9232335 DOI: 10.1155/2022/6486570] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022]
Abstract
Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
Collapse
Affiliation(s)
- Ijaz Ahmad
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Mingxing Zhu
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Cheng Wang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Yao Pi
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Javed Ali Khan
- Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Siyab Khan
- Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Oluwarotimi Williams Samuel
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Shixiong Chen
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
19
|
Zhu L, Zhang W, Chen L, Ren Y, Cao Y, Sun T, Sun B, Liu J, Wang J, Zheng C. Brain Gray Matter Alterations in Hepatic Encephalopathy: A Voxel-Based Meta-Analysis of Whole-Brain Studies. Front Hum Neurosci 2022; 16:838666. [PMID: 35517986 PMCID: PMC9062230 DOI: 10.3389/fnhum.2022.838666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previous studies on voxel-based morphometry (VBM) have found that there were gray matter alterations in patients with hepatic encephalopathy (HE). However, the reported results were inconsistent and lack a quantitative review. Therefore, this study aims for a quantitative meta-analysis of VBM analysis on patients with HE. Methods The studies in our meta-analysis were collected from Pubmed, Web of Science, and Embase, which were published from January 1947 to October 2021. The seed-based d mapping (SDM) method was applied to quantitatively estimate the regional gray matter abnormalities in patients with HE. A meta-regression analysis was applied to evaluate the relationship between plasma ammonia and gray matter alteration. Results There were nine studies, with sixteen datasets consisting of 333 participants with HE and 429 healthy controls. The pooled and subgroup meta-analyses showed an increase in gray matter volume (GMV) in the bilateral thalamus and the calcarine fissure but a decrease in the GMV in the bilateral insula, the basal ganglia, the anterior cingulate gyrus, and the cerebellum. The meta-regression showed that plasma ammonia was positively associated with the GMV in the left thalamus but was negatively associated with the GMV in the cerebellum and the bilateral striatum. Conclusion Gray matter volume in patients with HE largely varied and could be affected by plasma ammonia. The findings of this study could help us to better understand the pathophysiology of cognitive dysfunction in patients with HE.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Sun
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|