1
|
Ji XY, Lei CJ, Kong S, Li HF, Pan SY, Chen YJ, Zhao FR, Zhu TT. Hydroxy-Safflower Yellow A Mitigates Vascular Remodeling in Rat Pulmonary Arterial Hypertension. Drug Des Devel Ther 2024; 18:475-491. [PMID: 38405578 PMCID: PMC10893878 DOI: 10.2147/dddt.s439686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose The underlying causes of pulmonary arterial hypertension (PAH) often remain obscure. Addressing PAH with effective treatments presents a formidable challenge. Studies have shown that Hydroxysafflor yellow A (HSYA) has a potential role in PAH, While the mechanism underlies its protective role is still unclear. The study was conducted to investigate the potential mechanisms of the protective effects of HSYA. Methods Using databases such as PharmMapper and GeneCards, we identified active components of HSYA and associated PAH targets, pinpointed intersecting genes, and constructed a protein-protein interaction (PPI) network. Core targets were singled out using Cytoscape for the development of a model illustrating drug-component-target-disease interactions. Intersection targets underwent analysis for Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Selected components were then modeled for target interaction using Autodock and Pymol. In vivo validation in a monocrotaline-induced PAH (MCT-PAH) animal model was utilized to substantiate the predictions made by network pharmacology. Results We associated HSYA with 113 targets, and PAH with 1737 targets, identifying 34 mutual targets for treatment by HSYA. HSYA predominantly affects 9 core targets. Molecular docking unveiled hydrogen bond interactions between HSYA and several PAH-related proteins such as ANXA5, EGFR, SRC, PPARG, PGR, and ESR1. Conclusion Utilizing network pharmacology and molecular docking approaches, we investigated potential targets and relevant human disease pathways implicating HSYA in PAH therapy, such as the chemical carcinogenesis receptor activation pathway and the cancer pathway. Our findings were corroborated by the efficacious use of HSYA in an MCT-induced rat PAH model, confirming its therapeutic potential.
Collapse
Affiliation(s)
- Xiang-Yu Ji
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Cheng-Jing Lei
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Shuang Kong
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Han-Fei Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Si-Yu Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Yu-Jing Chen
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Fan-Rong Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| | - Tian-Tian Zhu
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, Henan, People’s Republic of China
| |
Collapse
|
2
|
Zheng C, An T, Liang Z, Lv B, Liu Y, Hu X, Zhang Y, Liu N, Tao S, Deng R, Liu J, Jiang G. Revealing the mechanism of quinoa on type 2 diabetes based on intestinal flora and taste pathways. Food Sci Nutr 2023; 11:7930-7945. [PMID: 38107122 PMCID: PMC10724620 DOI: 10.1002/fsn3.3710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
To investigate the antidiabetic effects and mechanisms of quinoa on type 2 diabetes mellitus (T2DM) mice model. In this context, we induced the T2DM mice model with a high-fat diet (HFD) combined with streptozotocin (STZ), followed by treatment with a quinoa diet. To explore the impact of quinoa on the intestinal flora, we predicted and validated its potential mechanism of hypoglycemic effect through network pharmacology, molecular docking, western blot, and immunohistochemistry (IHC). We found that quinoa could significantly improve abnormal glucolipid metabolism in T2DM mice. Further analysis showed that quinoa contributed to the improvement of gut microbiota composition positively. Moreover, it could downregulate the expression of TAS1R3 and TRPM5 in the colon. A total of 72 active components were identified by network pharmacology. Among them, TAS1R3 and TRPM5 were successfully docked with the core components of quinoa. These findings confirm that quinoa may exert hypoglycemic effects through gut microbiota and the TAS1R3/TRPM5 taste signaling pathway.
Collapse
Affiliation(s)
- Chun‐Yan Zheng
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Tian An
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Zheng‐Ting Liang
- Traditional Chinese Medicine SchoolXinjiang Medical UniversityXinjiangChina
| | - Bo‐Han Lv
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Yu‐Tong Liu
- Gansu Pure High‐Land Agricultural Science and Technology Limited CompanyLanzhouChina
- Zhong Li Science and Technology Limited CompanyBeijingChina
| | - Xue‐Hong Hu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Yue‐Lin Zhang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Nan‐Nan Liu
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Si‐Yu Tao
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Ru‐Xue Deng
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| | - Jia‐Xian Liu
- Gansu Pure High‐Land Agricultural Science and Technology Limited CompanyLanzhouChina
- Zhong Li Science and Technology Limited CompanyBeijingChina
| | - Guang‐Jian Jiang
- Traditional Chinese Medicine SchoolBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
3
|
Duan X, Li J, Cui J, Wen H, Xin X, Aisa HA. A network pharmacology strategy combined with in vitro experiments to investigate the potential anti-inflammatory mechanism of Prunus cerasifera Ehrhart. J Food Biochem 2022; 46:e14396. [PMID: 36169283 DOI: 10.1111/jfbc.14396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
This study aimed to investigate the anti-inflammatory activity of Prunus cerasifera Ehrhart (EHP). LC-MS/MS, network pharmacology, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis methods were used to investigate the chemical composition and the anti-inflammatory mechanism of EHP. The LC-MS/MS results showed that flavonoids and phenolic acids were the major compounds in EHP. The network pharmacology analysis results indicated that EHP was related to TNF, inflammatory cytokine, and MAPK signaling pathway. ELISA and Western blot results showed that EHP impeded the increase in inflammatory factors, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), nuclear transcription factors κB (p65), MAPK pathway, pyrolytic relevant proteins nod-like receptor family pyrin domain-containing 3 (NLRP3), and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2)/hemeoxygenase-1 (HO-1) pathway. Therefore, this research highlighted the potential application of P. cerasifera in the development of anti-inflammatory foods that prevented inflammatory diseases. PRACTICAL APPLICATIONS: In recent years, many synthetic drugs with anti-inflammatory effect have the disadvantages of high price and side effects. Thus, the development of anti-inflammatory drugs from natural resources has its application value. In this study, LPS-stimulated RAW264.7 cells were used to establish inflammatory model to verify the anti-inflammatory effect of Prunus cerasifera (EHP). The results showed that P. cerasifera possessed anti-inflammatory activity through inhibiting pro-inflammatory cytokines secretion, NF-κB, MAPK pathway, and NLRP3 inflammasome activation. Therefore, P. cerasifera has the potential to develop into functional food to prevent the progress of various inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaomei Duan
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingxue Cui
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huizheng Wen
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haji Akber Aisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Therapeutic Effect of Astragali Radix Extract Injection Combined with Bone Marrow Mesenchymal Stem Cells in Bleomycin-Induced Pulmonary Fibrotic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4933255. [PMID: 35733628 PMCID: PMC9208943 DOI: 10.1155/2022/4933255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a serious disease for which effective drugs are unavailable. Here, we treated rat models of bleomycin (BLM)-induced pulmonary fibrosis with Astragali Radix extract injection (AI) combined with or without bone marrow mesenchymal stem cells (BMSCs). We injected rats intratracheally with BLM and transplanted BMSCs via tail vein injection 15 days later. We also intraperitoneally injected AI daily from days 15 to 28. Changes in lung pathology and function, as well as the levels of matrix metalloproteinases, collagen, C-X-C motif chemokine ligand 12 (CXCL12), and cluster of differentiation 90 (CD90) were assessed. The results revealed that compared with the BLM group, groups treated with ARE and BMSCs (alone or combined) reduced the expression levels of TGF-β1 and collagens I and III, ameliorated pathological lung fibrotic damage, and improved lung function. The expression levels of MMP-1, MMP-3, and MMP-9 were reduced by either AI or BMSCs alone, whereas those of MMP-3, MMP-9, TIMP-1, CXCL12, and CD90 were elevated by combined AI and BMSCs compared with the BLM group. Overall, these findings demonstrated that AI and BMSCs both can reduce damage caused by PF in rats and that AI altered the expression of chemokines and surface markers in BMSCs.
Collapse
|