1
|
Xu D, Ye B, Lin L, Jin Y, Jiang Y, Zheng Z, Chen Y, Han X, Wang W, Wu G, Zhuang Z, Shan P, Liang G. Carnosol attenuates angiotensin II-induced cardiac remodeling and inflammation via directly binding to p38 and inhibiting p38 activation. Int Immunopharmacol 2024; 134:112143. [PMID: 38692016 DOI: 10.1016/j.intimp.2024.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Chronic inflammation is a significant contributor to hypertensive heart failure. Carnosol (Car), primarily derived from the sage plant (Salvia carnosa), exhibits anti-inflammatory properties in a range of systems. Nevertheless, the influence of angiotensin II (Ang II) on cardiac remodeling remains uncharted. Car was shown to protect mice's hearts against Ang II-induced heart damage at dosages of 20 and 40 mg/kg/d. This protection was evident in a concentration-related decrease in the remodeling of the heart and dysfunction. Examination of the transcriptome revealed that the pivotal roles in mediating the protective effects of Car involved inhibiting Ang II-induced inflammation and the activation of the mitogen-activated protein kinase (MAPK) pathway. Furthermore, Car was found to inhibit p38 phosphorylation, therefore reducing the level of inflammation in cultured cardiomyocytes and mouse hearts. This effect was attributed to the direct binding to p38 and inhibition of p38 protein phosphorylation by Car both in vitro and in vivo. In addition, the effects of Car on inflammation were neutralized when p38 was blocked in cardiomyocytes.
Collapse
Affiliation(s)
- Diyun Xu
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou 325800, Zhejiang, China; Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bozhi Ye
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liming Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanhong Jin
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchen Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhaozheng Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanghao Chen
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Han
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurosurgery, Affiliated Yongkang First People's Hospital, Hangzhou Medical College, Yongkang, Zhejiang 321399, China
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou 325800, Zhejiang, China.
| | - Peiren Shan
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Wenzhou 325800, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
and Alternative Medicine EBC. Retracted: Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9792078. [PMID: 38125185 PMCID: PMC10732849 DOI: 10.1155/2023/9792078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/7969422.].
Collapse
|
3
|
Chen J, Sun N, Li F, Li H, Tian J, Zheng S, Zhang L, Wang H, Luo Y. Carnosol Alleviates Collagen-Induced Arthritis by Inhibiting Th17-Mediated Immunity and Favoring Suppressive Activity of Regulatory T Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1179973. [PMID: 37415927 PMCID: PMC10322527 DOI: 10.1155/2023/1179973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Current approaches are incurable for rheumatoid arthritis (RA). Regulatory T (Treg) cells and T helper cells (Th1 and Th17) are crucial in controlling the process of RA, which is characterized by inflammatory cell infiltration and bone destruction. Carnosol is an orthodiphenolic diterpene that has been extensively applied in traditional medicine for the treatment of multiple autoimmune and inflammatory diseases. Herein, we indicate that administration of carnosol dramatically alleviated the severity of collagen-induced arthritis (CIA) model with a decreased clinical score and inflammation reduction. Cellular mechanistically, carnosol inhibits the Th17 cell differentiation and maintains Treg cell suppressive function in vitro and in vivo. Meanwhile, it also restrains Treg cells from transdifferentiation into Th17 cells under inflammatory milieu. Furthermore, carnosol modulates the function of Th17 and Treg cells possibly via limiting IL-6R (CD126) expression. Collectively, our results suggest that carnosol can alleviate the severity of CIA via hiding Th17 cell differentiation and maintain the stability of Treg cells. Administration of carnosol can be applied as a potential therapy for patients with RA.
Collapse
Affiliation(s)
- Jun Chen
- The Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Nianzhe Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Fuhan Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Haolin Li
- Rheumatic Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000 Gansu, China
| | - Jiale Tian
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Songguo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Haidong Wang
- Rheumatic Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000 Gansu, China
| | - Yang Luo
- The Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, 730000 Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000 Gansu, China
| |
Collapse
|
4
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Natural Products: Insight from Rosemary Diterpenes, Carnosic Acid and Carnosol. Biomedicines 2023; 11:biomedicines11020545. [PMID: 36831081 PMCID: PMC9953345 DOI: 10.3390/biomedicines11020545] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Carnosic acid (CA) and carnosol (CAR) are two major diterpenes of the rosemary plant (Rosmarinus officinalis). They possess a phenolic structural moiety and are endowed with the power to remove cellular reactive oxygen species (ROS) either through direct scavenging reaction or indirectly through upregulation of antioxidant defences. Hand in hand with these activities are their multiple biological effects and therapeutic potential orchestrated through modulating various signalling pathways of inflammation, including the NF-κB, MAPK, Nrf2, SIRT1, STAT3 and NLRP3 inflammasomes, among others. Consequently, they ameliorate the expression of pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6), adhesion molecules, chemokines and prostaglandins. These anti-inflammatory mechanisms of action as a therapeutic link to various effects of these compounds, as in many other natural products, are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
5
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1612829. [PMID: 35990822 PMCID: PMC9385299 DOI: 10.1155/2022/1612829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Background Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.
Collapse
|