1
|
Basit A, Ahmad S, Ovatlarnporn C, Arshad MA, Saleem MF, Khurshid U, Saleem H, Khan KUR, Khan S, Alkahtani HM, Zen AA. Unrivalled Insight into Possible Biopharmaceutical Application of Justicia vahlii Roth. (Acanthaceae): Chemodiversity, In Vitro Bioactivities, and Computational Analysis. Chem Biodivers 2024; 21:e202401432. [PMID: 39083693 DOI: 10.1002/cbdv.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Justicia vahliiRoth. is an important wild medicinal food plant traditionally used for treating inflammation and various common ailments. This study investigated the chemical composition, antioxidant, enzyme inhibition and toxicity profiles of n-hexane (nHEJv) and chloroform (CEJv) extracts of J. vahlii. Moreover, the effect of the extracts was evaluated on CCl4 induced liver injury. The total phenolic and flavonoid contents were present in both extracts in significant amount. The UPLC-Q-TOF-MS and GC-MS profiling of CEJv tentatively identified several important phytocompounds. The CEJv extract was comparatively more active for antioxidant activity and α-amylase inhibition, whereas the nHEJv extract presented higher inhibition potential against urease, tyrosinase, and α-glucosidase enzymes. Similarly, the in-silicostudy of four major compounds, i. e., 1-acetoxypinoresinol, 3-hydroxysebacic acid, nortrachelogenin, and viscidulin-III have shown a good docking score against the clinically significant enzymes. The acute oral toxicity and brine shrimp lethality assaysrevealed the extracts as non-toxic. The CCl4 treated animals showed a geared depletion of various antioxidant enzymes which were significantly reversed with the treatment of the extracts. Overall, the study's findings revealed J. vahliiwith antioxidant mediated hepatoprotective and enzyme inhibition potential and warrant further research on isolation of the bioactive compounds.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
- Drug Delivery System, Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
- Drug Delivery System, Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90010, Songkhla, Thailand
| | - Muhammad Adeel Arshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical and Allied Health Science, Lahore College for Women University, Lahore, 51000, Pakistan
| | - Muhammad Farrukh Saleem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary &Animal Sciences (UVAS), Lahore, 51000, Pakistan
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Safiullah Khan
- Cadson College of Pharmacy, Kharian, Punjab, 50090, Pakistan
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Amer Alhaj Zen
- Chemistry & Forensics Department, Clifton Campus, Nottingham Trent University, Nottingham, Ng11 8NS, UK
| |
Collapse
|
2
|
Kanwal S, Ahmad S, Yasmin Begum M, Siddiqua A, Rao H, Ghalloo BA, Shahzad MN, Ahmad I, Khan KUR. Chemical Profiling, in-vitro biological evaluation and molecular docking studies of Ruellia tweediana: An unexplored plant. Saudi Pharm J 2024; 32:101939. [PMID: 38261891 PMCID: PMC10797148 DOI: 10.1016/j.jsps.2023.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
Many Ruellia species have been utilized in traditional medicine and despite the prevalent use of Ruellia tweediana in folk medicine, its antioxidant potential and polyphenol content have not been investigated. Therefore, the present study aimed to explore the medicinal value of R. tweediana by evaluating its total phenolic (TPC) and flavonoid contents (TFC), GC-MS analysis, antioxidant, antibacterial, and enzyme inhibition activities. The TPC and TFC of the extract/fractions were assessed using the Folin-Ciocalteu and aluminum trichloride methods, respectively. To determine the antioxidant capacity, five different assays were used: DPPH, ABTS, CUPRAC, FRAP, and metal chelating assays. The inhibition activity against α-glucosidase, α-amylase, cholinesterases, and lipoxygenase enzymes was also analyzed. Furthermore, GC-MS was performed for chemical screening of non-polar fraction. The methanol extract showed the maximum TPC (167.34 ± 2.23 mg GAE/g) and TFC (120.43 ± 1.71 mg RE/g) values among all the tested samples. GC-MS screening of the n-hexane fraction showed the presence of 40 different phytoconstituents. The results demonstrated the highest scavenging potential of the methanol extract against DPPH (167.79 ± 2.75 mg TE/g) and ABTS (255.32 ± 2.91 mg TE/g) radicals, as well as the metal-reducing capacity measured by CUPRAC (321.34 ± 3.09 mg TE/g), FRAP (311.32 ± 2.91 mg TE/g), and metal chelating assay (246.78 ± 10.34 mg EDTAE/g). Notably, the n-hexane fraction revealed the highest α-glucosidase and α-amylase inhibition activity (186.8 ± 2.84 and 179.7 ± 4.32 mg ACAE/g, respectively) while methanol extract showed highest acetylcholinesterase and butyrylcholinesterase inhibition activity (198.6 ± 3.31 and 184.3 ± 2.92 mg GALE/g, respectively). The GC-MS identified Lupeol showed best binding affinity with all docked enzymes as compared to standard compounds. The presence of bioactive phytoconstituents showed by GC-MS underscores the medicinal importance of R. tweediana, making it a promising candidate for natural medicine.
Collapse
Affiliation(s)
- Shamsa Kanwal
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72404, United States of America
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University Abha 61421, Saudi Arabia
| | - Ayesha Siddiqua
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Huma Rao
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55454, United States of America
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Imtiaz Ahmad
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Primary & Secondary Health Department, Punjab 54000, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
International BR. Retracted: Chemical Composition and Biological Evaluation of Typha domingensis Pers. to Ameliorate Health Pathologies: In Vitro and In Silico Approaches. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9840785. [PMID: 38230122 PMCID: PMC10791395 DOI: 10.1155/2024/9840785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
[This retracts the article DOI: 10.1155/2022/8010395.].
Collapse
|
4
|
Rizvi SNR, Afzal S, Khan KUR, Aati HY, Rao H, Ghalloo BA, Shahzad MN, Khan DA, Esatbeyoglu T, Korma SA. Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of Haloxylon stocksii (Boiss.) Benth: A Promising Halophyte. Molecules 2023; 28:molecules28093847. [PMID: 37175255 PMCID: PMC10180423 DOI: 10.3390/molecules28093847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The objective of the study is to evaluate the chemical characterisation, and biological and in silico potential of Haloxylon stocksii (Boiss.) Benth, an important halophyte commonly used in traditional medicine. The research focuses on the roots and aerial parts of the plant and extracts them using two solvents: methanol and dichloromethane. Chemical characterisation of the extracts was carried out using total phenolic contents quantification, GC-MS analysis, and LC-MS screening. The results exhibited that the aerial parts of the plant have significantly higher total phenolic content than the roots. The GC-MS and LC-MS analysis of the plant extracts revealed the identification of 18 bioactive compounds in each. The biological evaluation was performed using antioxidant, antibacterial, and in vitro antidiabetic assays. The results exhibited that the aerial parts of the plant have higher antioxidant and in vitro antidiabetic activity than the roots. Additionally, the aerial parts of the plant were most effective against Gram-positive bacteria. Molecular docking was done to evaluate the binding affinity (BA) of the bioactive compounds characterised by GC-MS with diabetic enzymes used in the in vitro assay. The results showed that the BA of γ-sitosterol was better than that of acarbose, which is used as a standard in the in vitro assay. Overall, this study suggests that the extract from aerial parts of H. stocksii using methanol as a solvent have better potential as a new medicinal plant and can provide a new aspect to develop more potent medications. The research findings contribute to the scientific data of the medicinal properties of Haloxylon stocksii and provide a basis for further evaluation of its potential as a natural remedy.
Collapse
Affiliation(s)
- Syed Nabil Raza Rizvi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samina Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Kashif-Ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hanan Y Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55454, USA
| | - Muhammad Nadeem Shahzad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Duraiz Ahmed Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Rao H, Ahmad S, Y.Aati H, Basit A, Ahmad I, Ahmad Ghalloo B, Nadeem Shehzad M, Nazar R, Zeeshan M, Nasim J, ur Rehman Khan K. Phytochemical screening, biological evaluation, and molecular docking studies of aerial parts of Trigonella hamosa (branched Fenugreek). ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
|
6
|
Headspace Solid Phase Micro-Extraction of Volatile Constituents Produced from Saudi Ruta chalepensis and Molecular Docking Study of Potential Antioxidant Activity. Molecules 2023; 28:molecules28041891. [PMID: 36838880 PMCID: PMC9961936 DOI: 10.3390/molecules28041891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Ruta chalepensis L., commonly known as Shazab in Saudi Arabia, is one of the famous culinary plants belonging to the Rutaceae family. It is commonly used in ethnomedicine in treating numerous diseases. This study was performed to characterize the essential oil isolated from Saudi species using a relatively new advanced headspace solid-phase microextraction technique. Following that, the antioxidant activity of the extracted oil was assessed using in vitro techniques such as the DPPH and nitric oxide scavenging tests, as well as the reducing power FRAP study and the molecular docking tool. The essential oil yield of the dried plant was 0.83% (v/w). Gas chromatography joined with a mass spectrometer was used to determine the chemical composition of the pale-yellow essential oil. Sixty-eight constituents were detected, representing 97.70% of the total oil content. The major constituents were aliphatic ketones dominated by 2-undecanone (37.30%) and 2-nonanone (20.00%), with minor constituents of mono and sesquiterpenoids chemical classes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the major causes of many contemporary diseases due to its ability to create a reactive oxygen species (ROS). Thus, molecular docking was used to confirm that some oil phytoconstituents have good docking scores compared to the standard antioxidant drug (Vitamin C), indicating great binding compatibility between the (NADPH) oxidase receptor site and the ligand. In conclusion, our findings suggest that the oil could be used safely and as a cost-effective remedy in treating various modern diseases caused by free radical formation.
Collapse
|
7
|
Ahmed M, Khan KUR, Ahmad S, Aati HY, Sherif AE, Ashkan MF, Alrahimi J, Abdullah Motwali E, Imran Tousif M, Abbas Khan M, Hussain M, Umair M, Ghalloo BA, Korma SA. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Phytochemical, Antimicrobial, Antidiabetic, Thrombolytic, Anticancer Activities, and In silico Studies of Ficus palmata Forssk. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Nisar R, Ahmad S, Khan KUR, Sherif AE, Alasmari F, Almuqati AF, Ovatlarnporn C, Khan MA, Umair M, Rao H, Ghalloo BA, Khurshid U, Dilshad R, Nassar KS, Korma SA. Metabolic Profiling by GC-MS, In Vitro Biological Potential, and In Silico Molecular Docking Studies of Verbena officinalis. Molecules 2022; 27:molecules27196685. [PMID: 36235221 PMCID: PMC9573548 DOI: 10.3390/molecules27196685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Verbena officinalis L. is a traditionally important medicinal herb that has a rich source of bioactive phytoconstituents with biological benefits. The objective of this study was to assess the metabolic profile and in vitro biological potential of V. officinalis. The bioactive phytoconstituents were evaluated by preliminary phytochemical studies, estimation of polyphenolic contents, and gas chromatography-mass spectrometry (GC-MS) analysis of all fractions (crude methanolic, n-hexane, ethyl acetate, and n-butanol) of V. officinalis. The biological investigation was performed by different assays including antioxidant assays (DPPH, ABTS, CUPRAC, and FRAP), enzyme inhibition assays (urease and α-glucosidase), and hemolytic activity. The ethyl acetate extract had the maximum concentration of total phenolic and total flavonoid contents (394.30 ± 1.09 mg GAE·g-1 DE and 137.35 ± 0.94 mg QE·g-1 DE, respectively). Significant antioxidant potential was observed in all fractions by all four antioxidant methods. Maximum urease inhibitory activity in terms of IC50 value was shown by ethyl acetate fraction (10 ± 1.60 µg mL-1) in comparison to standard hydroxy urea (9.8 ± 1.20 µg·mL-1). The n-hexane extract showed good α-glucosidase inhibitory efficacy (420 ± 20 µg·mL-1) as compared to other extract/fractions. Minimum hemolytic activity was found in crude methanolic fraction (6.5 ± 0.94%) in comparison to positive standard Triton X-100 (93.5 ± 0.48%). The GC-MS analysis of all extract/fractions of V. officinalis including crude methanolic, n-hexane, ethyl acetate, and n-butanol fractions, resulted in the identification of 24, 56, 25, and 9 bioactive compounds, respectively, with 80% quality index. Furthermore, the bioactive compounds identified by GC-MS were analyzed using in silico molecular docking studies to determine the binding affinity between ligands and enzymes (urease and α-glucosidase). In conclusion, V. officinalis possesses multiple therapeutical potentials, and further research is needed to explore its use in the treatment of chronic diseases.
Collapse
Affiliation(s)
- Rabia Nisar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72404, USA
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (K.-u.-R.K.); (M.U.); Tel.: +92-33-6670-8638 (K.-u.-R.K.); +86-177-1291-5202 (M.U.)
| | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90110, Thailand
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Umair
- Department of Food Science and Engineering, College of Chemistry and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (K.-u.-R.K.); (M.U.); Tel.: +92-33-6670-8638 (K.-u.-R.K.); +86-177-1291-5202 (M.U.)
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rizwana Dilshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khaled S. Nassar
- Department of Food, Dairy Science and Technology, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
10
|
Chemical Profiling, Formulation Development, In Vitro Evaluation and Molecular Docking of Piper nigrum Seeds Extract Loaded Emulgel for Anti-Aging. Molecules 2022; 27:molecules27185990. [PMID: 36144719 PMCID: PMC9504714 DOI: 10.3390/molecules27185990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Emulgel is a new innovatory technique for drug development permitting controlled release of active ingredients for topical administration. We report a stable emulgel of 4% Piper nigrum extract (PNE) prepared using 80% ethanol. The PNE-loaded formulation had an antioxidant activity of 84% and tyrosinase inhibition was 82%. Prepared formulation rendered spherical-shaped globules with high zeta potential (−45.5 mV) indicative of a stable system. Total phenolic contents were 58.01 mg GAE/g of dry extract whereas total flavonoid content was 52.63 mg QE/g of dry extract. Sun protection factor for PNE-loaded emulgel was 7.512 and formulation was stable without any evidence of physical and chemical changes following 90 days of storage. Gas chromatography-mass spectroscopy (GC-MS) revealed seventeen bioactive compounds in the PNE including monoterpenoids, triterpenoids, a tertiary alcohol, fatty acid esters, and phytosterols. In silico studies of GC-MS identified compounds show higher binding affinity in comparison to standard kojic acid indicating tyrosinase inhibition. It can be concluded that PNE-loaded emulgel had prominent antioxidant and tyrosinase inhibition and can be utilized as a promising topical system for anti-aging skin formulation.
Collapse
|