1
|
Saha S, Ghosh M. Computational exploration of natural compounds targeting Staphylococcus aureus: inhibiting AgrA promoter binding for antimicrobial intervention. J Biomol Struct Dyn 2024; 42:8256-8267. [PMID: 37578046 DOI: 10.1080/07391102.2023.2246566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/15/2023]
Abstract
Staphylococcus aureus is a highly virulent nosocomial pathogen that poses a significant threat to individuals exposed to healthcare settings. Due to its sophisticated machinery for producing virulence factors, S. aureus can cause severe and potentially fatal infections in humans. This study focuses on the response regulator AgrA, which plays a crucial role in regulating the production of virulence factors in S. aureus. The objective is to identify natural compounds that can inhibit the binding of AgrA to its promoter site, thus inhibiting the expression of virulence genes. To achieve this, a pharmacophore model was generated using known drugs and applied to screen the ZINC natural product database. The resulting compounds were subjected to molecular docking-based virtual screening against the C-terminal DNA binding domain of AgrA. Three compounds, namely ZINC000077269178, ZINC000051012304, and ZINC000004266026, were shortlisted based on their strong affinity for key residues involved in DNA binding and transcription initiation. Subsequently, the unbound and ligand-bound complexes were subjected to a 200 ns molecular dynamics simulation to assess their conformational stability. Various analyses, including RMSD, RMSF, Rg, SASA, Principal Component Analysis, and Gibbs free energy landscape, were conducted on the simulation trajectory. The RMSD profile indicated similar fluctuations in both bound and unbound structures, while the Rg profile demonstrated the compactness of the protein without any unfolding during the simulation. Furthermore, Principal component analysis revealed that ligand binding reduced the overall atomic motion of the protein whereas free energy landscape suggested the energy variations obtained in complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhadip Saha
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Monidipa Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
2
|
Manu P, Nketia PB, Osei-Poku P, Kwarteng A. Computational Mutagenesis and Inhibition of Staphylococcus aureus AgrA LytTR Domain Using Phenazine Scaffolds: Insight From a Biophysical Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8843954. [PMID: 39328594 PMCID: PMC11424843 DOI: 10.1155/2024/8843954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Biofilm formation by Staphylococcus aureus is a major challenge in clinical settings due to its role in persistent infections. The AgrA protein, a key regulator in biofilm development, is a promising target for therapeutic intervention. This study investigates the antibiofilm potential of halogenated phenazine compounds by targeting AgrA and explores their molecular interactions to provide insights for drug development. We employed molecular docking, molecular dynamics simulations, and computational mutagenesis to evaluate the binding of halogenated phenazine compounds (C1 to C7, HP, and HP-14) to AgrA. Binding free energy analysis was performed to assess the affinity of these compounds for the AgrA-DNA complex. Additionally, the impact of these compounds on AgrA's structural conformation and salt bridge interactions was examined. The binding-free energy analysis revealed that all compounds enhance binding affinity compared to the Apo form of AgrA, which has a ΔGbind of -80.75 kcal/mol. The strongest binding affinities were observed with compounds C7 (-113.84 kcal/mol), HP-14 (-115.23 kcal/mol), and HP (-112.28 kcal/mol), highlighting their effectiveness. Molecular dynamics simulations demonstrated that these compounds bind at the hydrophobic cleft of AgrA, disrupting essential salt bridge interactions between His174-Glu163 and His174-Glu226. This disruption led to structural conformational changes and reduced DNA binding affinity, aligning with experimental findings on biofilm inhibition. The halogenated phenazine compounds effectively inhibit biofilm formation by targeting AgrA, disrupting its DNA-binding function. The study supports the potential of these compounds as antibiofilm agents and provides a foundation for rational drug design targeting the AgrA-DNA interaction. Future research should focus on further optimizing these lead compounds and exploring additional active sites on AgrA to develop novel treatments for biofilm-associated infections.
Collapse
Affiliation(s)
- Prince Manu
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prisca Baah Nketia
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Priscilla Osei-Poku
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Han B, Wang H, Niu X. A natural inhibitor of diapophytoene desaturase attenuates methicillin-resistant Staphylococcus aureus (MRSA) pathogenicity and overcomes drug-resistance. Br J Pharmacol 2024; 181:2583-2599. [PMID: 38604611 DOI: 10.1111/bph.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND AND PURPOSE At present, the inhibition of staphyloxanthin biosynthesis has emerged as a prominent strategy in combating methicillin-resistant Staphylococcus aureus (MRSA) infection. Nonetheless, there remains a limited understanding regarding the bio-structural characteristics of staphyloxanthin biosynthetic enzymes, as well as the molecular mechanisms underlying the interaction between inhibitors and proteins. Furthermore, the functional scope of these inhibitors is relatively narrow. EXPERIMENTAL APPROACH In this study, we address these limitations by harnessing the power of deep learning techniques to construct the 3D structure of diapophytoene desaturase (CrtN). We perform efficient virtual screening and unveil alnustone as a potent inhibitor of CrtN. Further investigations employing molecular modelling, site-directed mutagenesis and biolayer interferometry (BLI) confirmed that alnustone binds to the catalytic active site of CrtN. Transcriptomic analysis reveals that alnustone significantly down-regulates genes associated with staphyloxanthin, histidine and peptidoglycan biosynthesis. KEY RESULTS Under the effects of alnustone, MRSA strains exhibit enhanced sensitivity to various antibiotics and the host immune system, accompanied by increased cell membrane permeability. In a mouse model of systemic MRSA infection, the combination of alnustone and antibiotics exhibited a significant therapeutic effect, leading to reduced bacterial colony counts and attenuated pathological damage. CONCLUSION AND IMPLICATIONS Alnustone, as a natural inhibitor targeting CrtN, exhibits outstanding antibacterial properties that are single-targeted yet multifunctional. This finding provides a novel strategy and theoretical basis for the development of drugs targeting staphyloxanthin producing bacteria.
Collapse
Affiliation(s)
- Baoqing Han
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
4
|
Arrigoni R, Ballini A, Jirillo E, Santacroce L. Current View on Major Natural Compounds Endowed with Antibacterial and Antiviral Effects. Antibiotics (Basel) 2024; 13:603. [PMID: 39061285 PMCID: PMC11274329 DOI: 10.3390/antibiotics13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nowadays, infectious diseases of bacterial and viral origins represent a serious medical problem worldwide. In fact, the development of antibiotic resistance is responsible for the emergence of bacterial strains that are refractory even to new classes of antibiotics. Furthermore, the recent COVID-19 pandemic suggests that new viruses can emerge and spread all over the world. The increase in infectious diseases depends on multiple factors, including malnutrition, massive migration of population from developing to industrialized areas, and alteration of the human microbiota. Alternative treatments to conventional antibiotics and antiviral drugs have intensively been explored. In this regard, plants and marine organisms represent an immense source of products, such as polyphenols, alkaloids, lanthipeptides, and terpenoids, which possess antibacterial and antiviral activities. Their main mechanisms of action involve modifications of bacterial cell membranes, with the formation of pores, the release of cellular content, and the inhibition of bacterial adherence to host cells, as well as of the efflux pump. Natural antivirals can interfere with viral replication and spreading, protecting the host with the enhanced production of interferon. Of note, these antivirals are not free of side effects, and their administration to humans needs more research in terms of safety. Preclinical research with natural antibacterial and antiviral compounds confirms their effects against bacteria and viruses, but there are still only a few clinical trials. Therefore, their full exploitation and more intensive clinical studies represent the next steps to be pursued in this area of medicine.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
5
|
Shi C, Liu X, Chen Y, Dai J, Li C, Felemban S, Khowdiary MM, Cui H, Lin L. Inhibitory effects of citral on the production of virulence factors in Staphylococcus aureus and its potential application in meat preservation. Int J Food Microbiol 2024; 413:110581. [PMID: 38246026 DOI: 10.1016/j.ijfoodmicro.2024.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Foodborne diseases caused by Staphylococcus aureus contamination on meat and meat products has gained increasing attention in recent years, while the pathogenicity of S. aureus is mainly attributed to its virulence factors production, which is primarily regulated by quorum sensing (QS) system. Herein, we aimed to uncover the inhibitory effects and mechanisms of citral (CIT) on virulence factors production by S. aureus, and further explore its potential application in pork preservation. Susceptibility test confirmed the antibacterial properties of CIT against S. aureus, the minimal inhibitory concentration (MIC) was 0.25 mg/mL. Treatment with sub-MICs of CIT reduced the hemolytic activity by inhibiting the production of α-hemolysin, and staphylococcal enterotoxins (SEs) production was significantly inhibited by CIT in both culture medium and pork without affecting bacterial growth. Transcriptomic analysis indicated that the differentially expression genes encoding α-hemolysin, SEs, and other virulence factors were down-regulated after treatment with 1/2MIC CIT. Moreover, the genes related to QS including agrA and agrC were also down-regulated, while the global transcriptional regulator sarA was up-regulated. Data here demonstrated that CIT could inhibited S. aureus virulence factors production through disturbing QS systems. In a challenge test, the addition of CIT caused a remarkable inhibition of S. aureus population and delay in lipid oxidation and color change on pork after 15 days incubation at 4 °C. These findings demonstrated that CIT could not only efficiently restrain the production of S. aureus virulence factors by disturbing QS, but also exhibit the potential application on the preservation of meat products.
Collapse
Affiliation(s)
- Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Xu Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Shifa Felemban
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Manal M Khowdiary
- Department of Chemistry, Faculty of Applied Science, Al Leith University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
6
|
Nakajima I, Fukuda K, Ishida W, Kishimoto T, Kuwana A, Suzuki T, Kaito C, Yamashiro K. Staphylococcus aureus-derived virulent phenol-soluble modulin α triggers alarmin release to drive IL-36-dependent corneal inflammation. Microbes Infect 2024; 26:105237. [PMID: 37805122 DOI: 10.1016/j.micinf.2023.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/22/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients with keratitis produces substantial amounts of phenol-soluble modulin α (PSMα). However, the role of PSMα in S. aureus keratitis remains unclear. We observed that PSMα-producing and PSMα-deficient strains could infect the cornea in our experimental mouse keratitis model; however, only the PSMα-producing strain delayed epithelial wound healing and induced stromal inflammation. PSMα induced damage to the epithelium, the release of alarmins IL-1α and IL-36α, and the expression of inflammatory chemokines by resident corneal cells in the mouse corneal organ culture. The IL-36 (but not IL-1) receptor antagonist attenuated mouse keratitis induced by PSMα-containing bacterial culture supernatants, as well as by infection with PSMα-producing S. aureus, suggesting that the corneal inflammations were dependent on IL-36. Recombinant PSMα elicited IL-36-dependent corneal inflammation in mice. Thus, PSMα and the subsequently released IL-36 are critical factors triggering inflammation during S. aureus keratitis.
Collapse
Affiliation(s)
- Isana Nakajima
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Waka Ishida
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuma Kishimoto
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Aozora Kuwana
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University, Tokyo, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
7
|
Ramasamy M, Vetrivel A, Venugopal S, Murugesan R. Identification of inhibitors for Agr quorum sensing system of Staphylococcus aureus by machine learning, pharmacophore modeling, and molecular dynamics approaches. J Mol Model 2023; 29:258. [PMID: 37468720 DOI: 10.1007/s00894-023-05647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT Staphylococcus aureus is a highly pathogenic organism that is the most common cause of postoperative complications as well as severe infections like bacteremia and infective endocarditis. By mediating the formation of biofilms and the expression of virulent genes, the quorum sensing (QS) mechanism is a major contributor to the development of these diseases. By hindering its QS network, an innovative approach to avoiding this bacterial infection is taken. Targeting the AgrA of the Agr system serves as beneficial in holding the top position in the QS system cascade. METHODS Using known AgrA inhibitors, the machine learning algorithms (artificial neural network, naïve Bayes, random forest, and support vector machine) and pharmacophore model were developed. The potential lead compounds were screened against the Zinc and COCONUT databases using the best pharmacophore hypothesis. The hits were then subjected second screening process using the best machine learning model. The predicted active compounds were then reranked based on the docking score. The stability of AgrA-lead compounds was studied using molecular dynamics approaches, and an ADME profile was also carried out. Five lead compounds, namely, CNP02386963,4,5-trihydroxy-2-[({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.04,16.011,15]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)methyl]benzoic acid, CNP0129274 4-(dimethylamino)-1,5,6,10,12,12a-hexahydroxy-6-methyl-3,11-dioxo-3,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide, CNP0242717 3-Hydroxyasebotin, CNP0361624 3,4,5-trihydroxy-6-[(2,4,5,6,7-pentahydroxy-1-oxooctan-3-yl)oxy]oxane-2-carboxylic acid, and CNP0285058 2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2-(4-hydroxyphenyl)acetonitrile were obtained using the two-step virtual screening process. The molecular dynamics study revealed that the CNP0238696 was found to be stable in the binding pocket of AgrA. ADME profiles show that this compound has two Lipinski violations and low bioavailability. Further studies should be performed to assess the anti-biofilm activity of the lead compound in vitro.
Collapse
Affiliation(s)
- Monica Ramasamy
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Sharulatha Venugopal
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology, and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
8
|
Ghavam M, Bacchetta G, Castangia I, Manca ML. Evaluation of the composition and antimicrobial activities of essential oils from four species of Lamiaceae Martinov native to Iran. Sci Rep 2022; 12:17044. [PMID: 36220839 PMCID: PMC9553974 DOI: 10.1038/s41598-022-21509-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022] Open
Abstract
In this study the essential oils obtained from four different plant species belonging to the Lamiaceae family were extracted by means of hydrodistillation and their composition and antimicrobial activity were evaluated. About 66 components were identified by using gas chromatography-mass spectrometry (GC-MS), and among all, thymol (67.7%), oleic acid (0.5-62.1%), (-)-caryophyllene oxide (0.4-24.8%), α-pinene (1.1-19.4%), 1,8-cineole (0.2-15.4%), palmitic acid (0.32-13.28%), ( +)spathulenol (11.16%), and germacrene D (0.3-10.3%) were the most abundant in all the species tested (i.e. Thymus daenensis, Nepeta sessilifolia, Hymenocrater incanus, and Stachys inflata). In particular, only the composition of essential oils from H. incanus was completely detected (99.13%), while that of the others was only partially detected. Oxygenated monoterpenes (75.57%) were the main compounds of essential oil from T. daenensis; sesquiterpenes hydrocarbons (26.88%) were the most abundant in S. inflata; oxygenated sesquiterpenes (41.22%) were mainly detected in H. incanus essential oil, while the essential oil from N. sessilifolia was mainly composed of non-terpene and fatty acids (77.18%). Due to their slightly different composition, also the antibacterial activity was affected by the essential oil tested. Indeed, the highest antibacterial and antifungal activities were obtained with the essential oil from T. daenensis by means of the inhibition halo (39 ± 1 and 25 ± 0 mm) against Gram-positive strains such as Staphylococcus aureus and Aspergillus brasiliensis. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) of the essential oils obtained from the four species varied from 16 to 2000 μg/mL and were strictly affected by the type of microorganism tested. As an example, the essential oils from H. incanus and S. inflata were the most effective against the Gram-negative bacterium Pseudomonas aeruginosa (MIC 16 and 63 μg/ml, respectively), which is considered one of the most resistant bacterial strain. Therefore, the essential oils obtained from the four species contained a suitable phytocomplexes with potential applications in different commercial area such as agriculture, food, pharmaceutical and cosmetic industries. Moreover, these essential oils can be considered a valuable natural alternative to some synthetic antibiotics, thanks to their ability to control the growth of different bacteria and fungi.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3368883. [PMID: 35909468 PMCID: PMC9334058 DOI: 10.1155/2022/3368883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Questions have been raised apropos the emerging problem of microbial resistance, which may pose a great hazard to the human health. Among biosafe compounds are essential oils which captured consumer draw due to their multifunctional properties compared to chemical medication drugs. Here, we examined the chemical profile and the mechanism(s) of action of the Thymus vulgaris essential oil (TVEO) against a Gram-negative bacterium Salmonella enterica Typhimurium ATTCC 10028 (S. enterica Typhimurium ATTCC 10028) and two Gram-positive bacteria Staphyloccocus aureus ATCC 6538 (S. aureus ATCC 6538) and Listeria monocytogenes ATCC 19117 (L. monocytogenes ATCC 19117). Findings showed that TVEO was principally composed of thymol, o-cymene, and γ-terpinene with 47.44, 16.55, and 7.80%, respectively. Molecular docking simulations stipulated that thymol and β-sesquiphellandrene (a minor compound at 1.37%) could target multiple bacterial pathways including topoisomerase II and DNA and RNA polymerases of the three tested bacteria. This result pointed plausible impairments of the pathogenic bacteria cell replication and transcription processes. Through computational approach, the VEGA quantitative structure–activity relationship (QSAR) model, we revealed that among twenty-six TVEO compounds, sixteen had no toxic effects and could be safe for human consumption as compared to the Food and Drug Administration (FDA) approved drugs (ciprofloxacin and rifamycin SV). Assessed by the SwissADME server, the pharmacokinetic profile of all identified TVEO compounds define their absorption, distribution, metabolism, and excretion (ADME) properties and were assessed. In order to predict their biological activity spectrum based on their chemical structure, all TVEO compounds were subjected to PASS (Prediction of Activity Spectra for Substances) online tool. Results indicated that the tested compounds could have multiple biological activities and various enzymatic targets. Findings of our study support that identified compounds of TVEO can be a safe and effective alternative to synthetic drugs and can easily combats hazardous multidrug-resistant bacteria.
Collapse
|