1
|
Liu C, Xue Q, Zhang Y, Zhang D, Li Y. Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation. J Clin Hypertens (Greenwich) 2024; 26:1024-1038. [PMID: 38990083 PMCID: PMC11488320 DOI: 10.1111/jch.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein-protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.
Collapse
Affiliation(s)
- Chu‐Hao Liu
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qi‐Qi Xue
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi‐Qing Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dong‐Yan Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Huan JM, Ma XT, Li SY, Hu DQ, Chen HY, Wang YM, Su XY, Su WG, Wang YF. Effect of botanical drugs in improving symptoms of hypertensive nephropathy: Analysis of real-world data, retrospective cohort, network, and experimental assessment. Front Pharmacol 2023; 14:1126972. [PMID: 37089916 PMCID: PMC10113664 DOI: 10.3389/fphar.2023.1126972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Background/aim: Hypertensive nephropathy (HN) is a common complication of hypertension. Traditional Chinese medicine has long been used in the clinical treatment of Hypertensive nephropathy. However, botanical drug prescriptions have not been summarized. The purpose of this study is to develop a prescription for improving hypertensive nephropathy, explore the evidence related to clinical application of the prescription, and verify its molecular mechanism of action.Methods: In this study, based on the electronic medical record data on Hypertensive nephropathy, the core botanical drugs and patients’ symptoms were mined using the hierarchical network extraction and fast unfolding algorithm, and the protein interaction network between botanical drugs and Hypertensive nephropathy was established. The K-nearest neighbors (KNN) model was used to analyze the clinical and biological characteristics of botanical drug compounds to determine the effective compounds. Hierarchical clustering was used to screen for effective botanical drugs. The clinical efficacy of botanical drugs was verified by a retrospective cohort. Animal experiments were performed at the target and pathway levels to analyze the mechanism.Results: A total of 14 botanical drugs and five symptom communities were obtained from real-world clinical data. In total, 76 effective compounds were obtained using the K-nearest neighbors model, and seven botanical drugs were identified as Gao Shen Formula by hierarchical clustering. Compared with the classical model, the Area under the curve (AUC) value of the K-nearest neighbors model was the best; retrospective cohort verification showed that Gao Shen Formula reduced serum creatinine levels and Chronic kidney disease (CKD) stage [OR = 2.561, 95% CI (1.025–6.406), p < 0.05]. With respect to target and pathway enrichment, Gao Shen Formula acts on inflammatory factors such as TNF-α, IL-1β, and IL-6 and regulates the NF-κB signaling pathway and downstream glucose and lipid metabolic pathways.Conclusion: In the retrospective cohort, we observed that the clinical application of Gao Shen Formula alleviates the decrease in renal function in patients with hypertensive nephropathy. It is speculated that Gao Shen Formula acts by reducing inflammatory reactions, inhibiting renal damage caused by excessive activation of the renin-angiotensin-aldosterone system, and regulating energy metabolism.
Collapse
Affiliation(s)
- Jia-Ming Huan
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xi-Ting Ma
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR,China
| | - Si-Yi Li
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-Qing Hu
- Medical Services Section, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hao-Yu Chen
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi-Min Wang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Yi Su
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Ge Su
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yi-Fei Wang, ; Wen-Ge Su,
| | - Yi-Fei Wang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yi-Fei Wang, ; Wen-Ge Su,
| |
Collapse
|