1
|
Sen S, Basak S, Pandit S, Sarkar P, Kim TW, Ghosh N, Kong HJ, Ryu JS, Singh B, Roy R, Mondal R, Saha A, Jeon S, Bhattacharya S, Im J, Biswas G. Cellular internalization, cytotoxicity and DNA binding property of 2,3-diaminophenazine, synthesized using Jeanbandyite, a heterogeneous catalyst. Sci Rep 2024; 14:29684. [PMID: 39613919 DOI: 10.1038/s41598-024-81330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
In recent years, the development of novel chemistry routes for the synthesis of organic compounds has attracted special attention. 2,3-Diaminophenazine (DAP), a derivative of Phenazine, is a large group of nitrogen-containing heterocyclic compound with diverse chemical structure and various biological activities, such as antibacterial, antimicrobial, anti-inflammatory, and anticancer activities. Phenazine is a fluorescent molecule with wide range of biological properties. Therefore, a novel chemical methodology is required for effective synthesis of this product. Numerous oxidants can easily oxidize ortho-phenylenediamine (OPD) to create luminous DAP. This article discusses a simple, sustainable, and safe way to synthesize DAP using water as a green solvent and Jeanbandyite as a catalyst. Mass spectrometry, 1H-NMR and 13C-NMR were used to characterize the molecule, and the catalytic efficacy of Jeanbandyite was assessed. The cellular uptake and cytotoxicity of DAP were investigated to determine whether DAP can be used as a bioprobe in bioapplications. Finally, DAP binding to DNA was methodically performed and confirmed using molecular docking.
Collapse
Affiliation(s)
- Subhadeep Sen
- Department of Chemistry, Coochbehar Panchanan Barma University, Panchanan Nagar, Coochbehar, 736101, India
| | - Subhankar Basak
- Department of Chemistry, Coochbehar Panchanan Barma University, Panchanan Nagar, Coochbehar, 736101, India
| | - Samit Pandit
- Department of Chemistry, Coochbehar Panchanan Barma University, Panchanan Nagar, Coochbehar, 736101, India
| | - Pappu Sarkar
- Department of Chemistry, Coochbehar Panchanan Barma University, Panchanan Nagar, Coochbehar, 736101, India
| | - Tae Wan Kim
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Nandan Ghosh
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Hye Jeong Kong
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Jae Sung Ryu
- Department of Medical Life Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Bhagat Singh
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, USA
| | - Rosni Roy
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III-LB/8 Bidhannagar, Kolkata, 700106, India
| | - Rajib Mondal
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III-LB/8 Bidhannagar, Kolkata, 700106, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III-LB/8 Bidhannagar, Kolkata, 700106, India
| | - Seob Jeon
- Department of Obstetrics and Gynecology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Sumantra Bhattacharya
- Department of Chemistry, National Institute of Technology Sikkim, Barfung Block, Ravangla Sub-Division, Dist. Namchi, Sikkim, 737139, India.
| | - Jungkyun Im
- Department of Chemical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| | - Goutam Biswas
- Department of Chemistry, Coochbehar Panchanan Barma University, Panchanan Nagar, Coochbehar, 736101, India.
| |
Collapse
|
2
|
Zhang J, Tan YM, Li SR, Battini N, Zhang SL, Lin JM, Zhou CH. Discovery of benzopyridone cyanoacetates as new type of potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 265:116107. [PMID: 38171147 DOI: 10.1016/j.ejmech.2023.116107] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Ghosh N, Sen S, Biswas G, Saxena A, Haldar PK. Adsorption and Desorption Study of Reusable Magnetic Iron Oxide Nanoparticles Modified with Justicia adhatoda Leaf Extract for the Removal of Textile Dye and Antibiotic. WATER, AIR, AND SOIL POLLUTION 2023; 234:202. [PMID: 36938148 PMCID: PMC10010655 DOI: 10.1007/s11270-023-06217-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 06/02/2023]
Abstract
The release of tetracycline hydrochloride (TCH) and methylene blue (MB) dye into the aquatic system uncontrollably caused major environmental and health problems; hence, their prevention required serious attention. Adsorption process is now being researched in order to increase adsorption efficiency and reprocess to alleviate environmental issues. The use of magnetic nanoparticle as an adsorbent for wastewater treatment has a lot of prospective. A magnetic iron oxide nanoparticle surface modified by Vasaka (Justicia adhatoda) leaf extract (JA-MIONs) is used to give a fast removal approach for MB dye and TCH antibiotics. Dynamic light scattering, UV-Vis and band gap measurement, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy were operated to analyse the formation and size of these magnetic nanoparticles. The impacts of different factors such as contact time (30-150 min), adsorbate concentration (10-50 mg/L), pH (4-10), and adsorbent dose (2-10 mg) were explored. Adsorption kinetics and isotherms show that it follows the pseudo-first-order kinetic and the Freundlich isotherm, with maximum adsorption capacities of 76.92 mg/g for MB and 200 mg/g for TCH at 298 K. The reusability of the JA-MIONs eventually exhibited a decline in the adsorption percentage of MB and TCH after five and four times respectively. After the desorption-adsorption cycles, this adsorbent continued to exhibit significant adsorption capacity. This investigation furnished the significant reference data for the synthesis of JA-MIONs as a novel and auspicious adsorbent for the industrial clean-up of toxic dyes and heavily used antibiotics from water. Graphical abstract
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Physics, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| | - Atul Saxena
- Department of Physics, North-Eastern Hill University, Shillong, 793002 India
| | - Prabir Kumar Haldar
- Department of Physics, Cooch Behar Panchanan Barma University, Cooch Behar, 736101 West Bengal India
| |
Collapse
|
4
|
Waziri I, Yusuf TL, Zarma HA, Oselusi SO, Coetzee LCC, Adeyinka AS. New Palladium (II) Complexes from Halogen Substituted Schiff Base Ligands: Synthesis, Spectroscopic, Biological Activity, Density functional theory, and Molecular Docking Investigations. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Recent Overview of Potent Antioxidant Activity of Coordination Compounds. Antioxidants (Basel) 2023; 12:antiox12020213. [PMID: 36829772 PMCID: PMC9952845 DOI: 10.3390/antiox12020213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
During recent decades, the complexation of organic ligands toward several metal ions of s-p and d-block has been applied as a plan to enhance its antioxidant performance. Due to their wide range of beneficial impacts, coordination compounds are widely used in industries, specifically in the medicinal and pharmaceutical fields. The activity is generally improved by chelation consequently knowing that the characteristics of both ligands and metals can lead to the development of greatly active compounds. Chelation compounds are a substitute for using the traditional synthetic antioxidants, because metal chelates present benefits, including a variety in geometry, oxidation states, and coordination number, that assist and favor the redox methods associated with antioxidant action. As well as understanding the best studied anti-oxidative assets of these compounds, coordination compounds are involved in the free radical scavenging process and protecting human organisms from the opposing effects of these radicals. The antioxidant ability can be assessed by various interrelated systems. The methodological modification offers the most knowledge on the antioxidant property of metal chelates. Colorimetric techniques are the most used, though electron paramagnetic resonance (EPR) is an alternative for metallic compounds, since color does not affect the results. Information about systems, with their benefits, and restrictions, permits a dependable valuation of the antioxidant performance of coordination compounds, as well as assisting application in various states wherever antioxidant drugs are required, such as in food protection, appropriate good-packaged foods, dietary supplements, and others. Because of the new exhaustive analysis of organic ligands, it has become a separate field of research in chemistry. The present investigation will be respected for providing a foundation for the antioxidant properties of organic ligands, future tests on organic ligands, and building high-quality antioxidative compounds.
Collapse
|
6
|
Ichimaru Y, Kato K, Nakatani R, Isomura R, Sugiura K, Yamaguchi Y, Jin W, Mizutani H, Imai M, Kurihara M, Fujita M, Otsuka M, Kurosaki H. Structural Characterization of Zinc(II)/Cobalt(II) Complexes of Chiral N-(Anthracen-9-yl)methyl-N,N-bis(2-picolyl)amine and Evaluation of DNA Photocleavage Activity. Chem Pharm Bull (Tokyo) 2023; 71:545-551. [PMID: 37394603 DOI: 10.1248/cpb.c23-00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We designed and synthesized a chiral ligand N-(anthracen-9-ylmethyl)-1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)ethanamine (APPE) DNA photocleavage agent to investigate the effects of chirality of bis(2-picolyl)amine on the DNA photocleavage activity of metal complexes. The structures of ZnII and CoII complexes in APPE were analyzed via X-ray crystallography and fluorometric titration. APPE formed metal complexes with a 1 : 1 stoichiometry in both the crystalline and solution states. Fluorometric titration was used to show that the ZnII and CoII association constants of these complexes (log Kas) were 4.95 and 5.39, respectively. The synthesized complexes were found to cleave pUC19 plasmid DNA when irradiated at 370 nm. The DNA photocleavage activity of the ZnII complex was higher than that of the CoII complex. The absolute configuration of the methyl-attached carbon did not affect DNA cleavage activity and, unfortunately, an achiral APPE derivative without the methyl group (ABPM) was found to perform DNA photocleavage more effectively than APPE. One reason for this may be that the methyl group suppressed the structural flexibility of the photosensitizer. These results will be useful for the design of new photoreactive reagents.
Collapse
Affiliation(s)
- Yoshimi Ichimaru
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences
| | - Koichi Kato
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences
| | | | | | | | | | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University
| | | | | | - Masaaki Kurihara
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University
- Department of Drug Discovery, Science Farm Ltd
| | | |
Collapse
|
7
|
Roy S, Sen S, Saha S, Deb SK, Singh B, Biswas G. Design, synthesis and molecular docking studies of 5-fluoro 1-aryl/alkyl sulfonyl benzimidazole derivatives for treatment of Parkinson’s disease. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subarna Roy
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Subhadeep Sen
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Samiran Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sandip Kumar Deb
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Bhagat Singh
- Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, NC, USA
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| |
Collapse
|