1
|
Sati P, Sharma E, Dhyani P, Attri DC, Rana R, Kiyekbayeva L, Büsselberg D, Samuel SM, Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur J Med Res 2024; 29:90. [PMID: 38291541 PMCID: PMC10826257 DOI: 10.1186/s40001-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer drugs are available, but they often come with side effects and can interact negatively with other medications. Additionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, leading to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains a significant challenge. However, plants are a potent source of natural products with the potential for cancer treatment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers can use this detailed information to develop effective and affordable treatments for cancer.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Rohit Rana
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | | |
Collapse
|
2
|
Methods in Medicine CAM. Retracted: Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9867605. [PMID: 37416209 PMCID: PMC10322420 DOI: 10.1155/2023/9867605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/8524951.].
Collapse
|