1
|
Xiao Y, Tao P, Zhang K, Chen L, Lv J, Chen Z, He L, Jia H, Sun J, Cao M, Hong J, Qu C. Myofibroblast-derived extracellular vesicles facilitate cancer stemness of hepatocellular carcinoma via transferring ITGA5 to tumor cells. Mol Cancer 2024; 23:262. [PMID: 39574133 PMCID: PMC11580229 DOI: 10.1186/s12943-024-02170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Myofibroblasts constitute a significant component of the tumor microenvironment (TME) and play a pivotal role in the progression of hepatocellular carcinoma (HCC). Integrin α5 (ITGA5) is a crucial regulator in myofibroblasts of malignant tumors. Therefore, the potential of ITGA5 as a novel target for the therapeutic strategy of HCC should be investigated. METHODS Digital scanning and analysis of the HCC tissue microarray were performed to locate the distribution of ITGA5 and conduct the prognosis analysis. CRISPR Cas9-mediated ITGA5 knockout was performed to establish the ITGA5-KO myofibroblast cell line. Extracellular vesicles (EVs) derived from LX2 were extracted for the treatment of HCC cells. Subsequently, the sphere-forming ability and the stemness markers expression of the treated HCC cells were examined. An orthotopic HCC mouse model with fibrotic injury was constructed to test the outcomes of ITGA5-targeting therapy and its efficacy in the programmed death-ligand 1 (PD-L1) treatment. Co-immunoprecipitation/mass spectrometry and transcriptome data were integrated to delve into the mechanism. RESULTS The tissue microarray results revealed that ITGA5 was highly enriched in the stromal myofibroblasts of HCC tissues and contributed to enhanced tumor progression and poor prognosis. Notably, ITGA5 transmission via extracellular vesicles (EVs) from myofibroblasts to HCC cells induced the acquisition of cancer stem cell-like properties. Mechanistically, ITGA5 directly bind to YES1, facilitating the activation of YES1 and its downstream pathways, thereby enhancing the stemness of HCC cells. Furthermore, the blockade of ITGA5 impeded tumor progression driven by ITGA5+ myofibroblasts and enhanced the efficacy of treatment with PD-L1 in a mouse model of HCC. CONCLUSIONS Our findings elucidated a novel mechanism by which the EV-mediated transfer of ITGA5 from myofibroblasts to tumor cells augmented HCC stemness. ITGA5-targeting therapy helped prevent the progression of HCC and improved the efficacy of PD-L1 treatment.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
- Endoscopy Department, Sichuan Cancer Center, Sichuan Cancer Hospital and Institute, Affiliate Cancer Hospital of University of Electronic Science and Technology of China (UESTC), Chengdu, 610000, China
| | - Ping Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Keke Zhang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Liuyan Chen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jinyu Lv
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Zhiwei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510000, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510000, China
| | - Jian Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Mingrong Cao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China.
| | - Chen Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Liao Y, Huang Q, Shen G, Muhanmode Y, Luo X, Li F, Wen M, Liu J, Huang H. Molecular subtypes and nomogram for predicting the prognosis of cervical cancer based on a matrix-immune signature. Discov Oncol 2024; 15:405. [PMID: 39230769 PMCID: PMC11374942 DOI: 10.1007/s12672-024-01265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Cervical cancer is a kind of tumor related to chronic HPV infection. Currently, the treatment of cervical cancer is guided mainly by clinicopathological factors. The role of tumor microenvironment in the prognosis and treatment of cervical cancer has been ignored. We aimed to use bioinformatics to identify the molecular subtypes in cervical cancer and construct a predictive nomogram combining a matrix-immune signature (MIS) and clinicopathological factors to support treatment decisions. Two cervical cancer subtypes with different prognoses were identified based on matrix- and immune-genes in TCGA-CESC. The MIS was developed using Cox regression and Lasso algorithm and verified in the Cancer Genome Characterization Initiative (CGCI) using time-dependent receiver operating characteristic (ROC) curve analysis. Multivariable analysis identified lymph node metastases, lymphovascular space invasion, and the MIS as independent prognostic factors, which were used to construct the predictive nomogram. The areas under the ROC curve of the model were 0.872, 0.879, and 0.803 for the 1-, 3-, and 5-year periods, respectively. The C-index was 0.845. Calibration curves confirmed the excellent prognosis prediction of the nomogram. The nomogram indicted a 3-year survival rate of > 90% in patients with a total score > 110.1. The constructed predictive nomogram has significant implications for prognostic assessment and treatment selection in cervical cancer.
Collapse
Affiliation(s)
- Yuanyuan Liao
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510000, China
| | - Qidan Huang
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510000, China
| | - Guqun Shen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Yalikun Muhanmode
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Xiaolin Luo
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510000, China
| | - Fen Li
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Mengke Wen
- The Second Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Jihong Liu
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510000, China.
| | - He Huang
- Department of Gynecological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Wang S, Castro BA, Katz JL, Arrieta V, Najem H, Vazquez-Cervantes GI, Wan H, Olson IE, Hou D, Dapash M, Billingham LK, Chia TY, Wei C, Rashidi A, Platanias LC, McCortney K, Horbinski CM, Stupp R, Zhang P, Ahmed AU, Sonabend AM, Heimberger AB, Lesniak MS, Riviere-Cazaux C, Burns T, Miska J, Fischietti M, Lee-Chang C. B cell-based therapy produces antibodies that inhibit glioblastoma growth. J Clin Invest 2024; 134:e177384. [PMID: 39207859 PMCID: PMC11473152 DOI: 10.1172/jci177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the BVax (B cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aimed to characterize the antigenic reactivity of BVax-derived Abs and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and samples from patients with GBM. Our investigations revealed that BVax distributed throughout the GBM tumor microenvironment and then differentiated into Ab-producing plasmablasts. Proteomics analyses indicated that the Abs produced by BVax had unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these Abs inhibited critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived Abs for patients with GBM, pointing toward a novel direction for GBM immunotherapy.
Collapse
Affiliation(s)
- Si Wang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Brandyn A. Castro
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Joshua L. Katz
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Victor Arrieta
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Gustavo I. Vazquez-Cervantes
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Hanxiao Wan
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Ian E. Olson
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - David Hou
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mark Dapash
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leah K. Billingham
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Tzu-yi Chia
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Chao Wei
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Zhang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | | | - Terry Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesotta, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
4
|
Li S, Gao K, Yao D. Comprehensive Analysis of angiogenesis associated genes and tumor microenvironment infiltration characterization in cervical cancer. Heliyon 2024; 10:e33277. [PMID: 39021997 PMCID: PMC11252983 DOI: 10.1016/j.heliyon.2024.e33277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Cervical cancer is among the most prevalent malignancies worldwide. This study explores the relationships between angiogenesis-related genes (ARGs) and immune infiltration, and assesses their implications for the prognosis and treatment of cervical cancer. Additionally, it develops a diagnostic model based on angiogenesis-related differentially expressed genes (ARDEGs). Methods We systematically evaluated 15 ARDEGs using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA). Immune cell infiltration was assessed using a single-sample gene-set enrichment analysis (ssGSEA) algorithm. We then constructed a diagnostic model for ARDEGs using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and evaluated the diagnostic value of this model and the hub genes in predicting clinical outcomes and immunotherapy responses in cervical cancer. Results A set of ARDEGs was identified from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UCSC Xena database. We performed KEGG, GO, and GSEA analyses on these genes, revealing significant involvement in cell proliferation, differentiation, and apoptosis. The ARDEGs diagnostic model, constructed using LASSO regression analysis, showed high predictive accuracy in cervical cancer patients. We developed a reliable nomogram and decision curve analysis to evaluate the clinical utility of the ARDEG diagnostic model. The 15 ARDEGs in the model were associated with clinicopathological features, prognosis, and immune cell infiltration. Notably, ITGA5 expression and the abundance of immune cell infiltration (specifically mast cell activation) were highly correlated. Conclusion This study identifies the prognostic characteristics of ARGs in cervical cancer patients, elucidating aspects of the tumor microenvironment. It enhances the predictive accuracy of immunotherapy outcomes and establishes new strategies for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Kun Gao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| |
Collapse
|
5
|
Dror S, Lucotti S, Asao T, Li J, Wortzel I, Berger LS, Matei I, Boudreau N, Zhang H, Jones D, Bromberg J, Lyden D. Tumour-derived Extracellular Vesicle and Particle Reprogramming of Interstitial Macrophages in the Lung Pre-Metastatic Niche Enhances Vascular Permeability and Metastatic Potential. RESEARCH SQUARE 2024:rs.3.rs-4462139. [PMID: 38853850 PMCID: PMC11160910 DOI: 10.21203/rs.3.rs-4462139/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles and particles (EVPs) are pivotal mediators of pre-metastatic niche formation and cancer progression, including induction of vascular permeability, which facilitates tumor cell extravasation and metastasis. However, the mechanisms through which EVPs exert this effect remain poorly understood. Here, we elucidate a novel mechanism by which tumor EVPs enhance endothelial cell permeability, tumor extravasation, and lung metastasis to different degrees, depending on tumor type. Strikingly, vascular leakiness is observed within 48h following tumor implantation and as early as one hour following intravenous injection of tumour-derived EVPs in naïve mice. Surprisingly, rather than acting directly on endothelial cells, EVPs first activate interstitial macrophages (IMs) leading to activation of JAK/STAT signaling and IL-6 secretion in IMs which subsequently promote endothelial permeability. Depletion of IMs significantly reduces tumour-derived EVP-dependent vascular leakiness and metastatic potential. Tumour EVPs that strongly induce vascular leakiness express high levels of ITGα5, and ITGα5 ablation impairs IM activation, cytokine secretion, and subsequently vascular permeability and metastasis. Importantly, IL-6 expression is elevated in IMs from non-involved tumor-adjacent lung tissue compared to distal lung tissue in lung cancer patients, highlight the clinical relevance of our discovery. Our findings identify a key role for IM activation as an initiating step in tumor type-specific EVP-driven vascular permeability and metastasis, offering promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shani Dror
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jianlong Li
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Inbal Wortzel
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Lee Shaashua Berger
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Jones
- Department of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Chen B, Chen L, Yang J, Hou M, Cai Q, Dai W, Zhou X, Wang W, Long X, Yin N. Cepharanthine inhibits migration, invasion, and EMT of bladder cancer cells by activating the Rap1 signaling pathway in vitro. Am J Transl Res 2024; 16:1602-1619. [PMID: 38883391 PMCID: PMC11170605 DOI: 10.62347/wdff7432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Cepharanthine, a bioactive constituent of Stephania japonica (Thunb.) Miers, is known for its potent anti-tumor properties. Nevertheless, the precise impact of this substance on bladder cancer remains poorly comprehended. The aim of this study was to demonstrate the effect and mechanism of cepharanthine on the metastasis of human bladder cancer cells. METHODS The application of network pharmacology was utilized to ascertain the possible targets and signaling pathways of cepharanthine in the treatment of bladder cancer. The antiproliferative effects of cepharanthine were evaluated using Cell Counting Kit-8 and colony formation assays. The migration and invasion capabilities were assessed using Transwell assays and wound healing experiments. Proteins related to the Rap1 signaling pathway, cellular migration, cellular invasion, and Epithelial-Mesenchymal Transition (EMT) were quantified by western blotting. RESULTS Through database screening, 313 cepharanthine-acting targets, 277 candidate disease targets in bladder cancer, 22 intersecting targets, and 12 core targets were confirmed. The involvement of the Rap1 signaling system was revealed by the Kyoto Encyclopedia of Genes and Genomes' pathway enrichment study. Cepharanthine was shown to decrease bladder cancer cell proliferation, migration, and invasion in vitro. Cepharanthine activated the Rap1 signaling pathway by upregulating Epac1 and downregulating E-cadherin and C3G protein expression, leading to increased expression of Rap1 GTP protein and decreased expression of protein kinase D1 and integrin α5. Rap1 signalling pathway activation resulted in the downregulation of migration and invasion-related proteins, matrix metallopeptidase MMP2, MMP9, as well as EMT-related proteins, N-cadherin and Snail, without affecting vimentin expression. CONCLUSION Cepharanthine inhibits migration, invasion, and EMT of bladder cancer cells by activating the Rap1 signalling pathway. The results offer helpful insights regarding the possible therapeutic use of cepharanthine for treating bladder cancer.
Collapse
Affiliation(s)
- Bo Chen
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Lin Chen
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Jin Yang
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Mingqiang Hou
- Department of Urology, Xishui County People's Hospital Zunyi 563000, Guizhou, China
| | - Qibo Cai
- Department of Urology, Xishui County People's Hospital Zunyi 563000, Guizhou, China
| | - Wenbin Dai
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Xin Zhou
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Weiwei Wang
- Department of Urology, Zunyi Medical University Zunyi 563000, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Xiaoming Long
- Department of Pharmacy, Clinical Medical College and Affiliated Hospital of Chengdu University Chengdu 610000, Sichuan, China
| | - Na Yin
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University Zunyi 563000, Guizhou, China
| |
Collapse
|
7
|
Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, Li M, Zhao Y. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer 2024; 23:33. [PMID: 38355583 PMCID: PMC10865535 DOI: 10.1186/s12943-024-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.
Collapse
Affiliation(s)
- Chuanpeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ziyi Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Susu Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yitao Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiangni Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juan Mao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Minghui Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yi Zhao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
8
|
Yao H, Hu J, Shao Y, Shao Q, Zheng S. Aldo-keto Reductase 1B10 Restrains Cell Migration, Invasion, and Adhesion of Gastric Cancer via Regulating Integrin Subunit Alpha 5. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1197-1205. [PMID: 37823316 PMCID: PMC10765221 DOI: 10.5152/tjg.2023.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/06/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND/AIMS Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.
Collapse
Affiliation(s)
- Haibo Yao
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Junfeng Hu
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinshu Shao
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|