1
|
Nawar NF, Beltagy DM, Tousson E, El-Keey MM, Mohamed TM. Coenzyme Q10 alleviates AlCl 3 and D-galactose induced Alzheimer via modulating oxidative burden and TLR-4/MAPK pathways and regulation microRNA in rat brain. Toxicol Res (Camb) 2025; 14:tfaf031. [PMID: 40052020 PMCID: PMC11881693 DOI: 10.1093/toxres/tfaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Alzheimer's disease (ad) is the most progressive form of neurodegenerative disease resulting in cognitive and non-cognitive deficits. Coenzyme Q10 (CoQ10) is an anti-inflammatory and anti-oxidative stress supplement that can improve inflammation and oxidative stress associated with ad. This study aimed to explore the protective potential of coenzyme Q10 (CoQ10). It also sought to uncover any synergistic effects when combined with donepezil, an acetylcholinesterase inhibitor, in treating Alzheimer's disease in rats, focusing on the modulation of the TLR-4/MAPK pathway and regulation of microRNA. The experiment involved seventy rats categorized into different groups: control, Reference group (donepezil 10 mg/kg/P.O.), CoQ10 alone (1,200 mg/kg/P.O.), ad-model (D-galactose (120 mg/kg/i.p) + Alcl3 (50 mg/kg/P.O.)), donepezil co-treatment, CoQ10 co-treatment, and CoQ10 + donepezil co-treatment. Behavioral parameter was defined using the Morris-Maze test (MMT) and various assessments, such as GABA, oxidative stress, Aβ1-42, ion homeostasis, toll-like receptor-4 (TLR-4), mitogen-activated protein kinase-1 (MAPK-1), micro-RNA (mir-106b, mir-107, and mir-9) were measured. Immunohistological staining was used to assess structural abnormalities in hippocampus. CoQ10 treatment demonstrated memory improvement, enhanced locomotion, and increased neuronal differentiation, mainly through the activation of the TLR-4/MAPK pathway and regulation of mir-106b, mir-107, and mir-9. Highlights Coenzyme Q10 (CoQ10) improved the rats' passive avoidance memory impairment caused by D-gal and AlCl3. ad led to the alteration of the TLR-4/MAPK pathways.CoQ10 as a protective agent, diminishes oxidative burden, improve ion homeostasis.CoQ10 counteracts Alzheimer's disease by enhancing neurotransmitter parameter and regulating the MicroRNA.CoQ10 lowered accumulation of Aβ plaque in the hippocampal neurons of D-Gal and AlCl3-treated rats.One promising therapeutic method was the combination of donepezil and CoQ10 therapy.
Collapse
Affiliation(s)
- Nagat F Nawar
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| | - Doha M Beltagy
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Damanhour University, 22514, Egypt
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, 31527, Egypt
| | - Mai M El-Keey
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| | - Tarek M Mohamed
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt
| |
Collapse
|
2
|
Fang C, Qian J, Tu BZ, Xia X, Jia CY, Shen CL. MiR-124 Delivered by Extracellular Vesicles from Mesenchymal Stem Cell Exerts Neuroprotective Effects by Stabilizing the p62-Keap1-Nrf2 Pathway after Spinal Cord Injury in Rats. Mol Neurobiol 2025:10.1007/s12035-025-04755-2. [PMID: 39992585 DOI: 10.1007/s12035-025-04755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
Spinal cord injury (SCI) can cause irreversible trauma to nervous tissue, leading to permanent damage to the patient's motor and sensory functions. Extracellular vesicles derived from mesenchymal stem cells (MSC-EVs) can simulate most of the functions of MSCs and are considered an ideal treatment option for SCI. However, the potential mechanism of MSC-EVs treatment for SCI still needs to be explored. We cultured neurons in vitro to investigate the effect of miR-124 on the p62-Keap1-Nrf2 pathway. Besides, MSC-EVs containing miR-124 were injected into a rat spinal cord injury model to observe their neural repair effect. The accumulation of p62 can be reversed by miR-124, which promotes autophagy and alleviates oxidative stress, thereby exerting neuroprotective effects. Rats who received injection of MSC-EVs overexpressing miR-124 after surgery showed higher BBB scores, lower levels of cell apoptosis, and better spinal cord tissue morphology. Our results indicated that miR-124 can stabilize the p62-Keap1-Nrf2 loop, thereby promoting autophagy and alleviating oxidative stress to exert neuroprotective effects. Our research proposes a novel potential target for treating SCI.
Collapse
Affiliation(s)
- Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, China
| | - Jun Qian
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, China
| | - Bi-Zhi Tu
- Department of Orthopedics, The First People's Hospital of Hefei, No. 390 Huaihe Road, Hefei, Anhui Province, China
| | - Xiang Xia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, China
| | - Chong-Yu Jia
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, China
| | - Cai-Liang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui Province, China.
- Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Shushan District of Hefei, No. 218 Jixi Road, Anhui Province, China.
| |
Collapse
|
3
|
Zhu Y, Zhang J, Deng Q, Chen X. Mitophagy-associated programmed neuronal death and neuroinflammation. Front Immunol 2024; 15:1460286. [PMID: 39416788 PMCID: PMC11479883 DOI: 10.3389/fimmu.2024.1460286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Mitochondria are crucial organelles that play a central role in cellular metabolism and programmed cell death in eukaryotic cells. Mitochondrial autophagy (mitophagy) is a selective process where damaged mitochondria are encapsulated and degraded through autophagic mechanisms, ensuring the maintenance of both mitochondrial and cellular homeostasis. Excessive programmed cell death in neurons can result in functional impairments following cerebral ischemia and trauma, as well as in chronic neurodegenerative diseases, leading to irreversible declines in motor and cognitive functions. Neuroinflammation, an inflammatory response of the central nervous system to factors disrupting homeostasis, is a common feature across various neurological events, including ischemic, infectious, traumatic, and neurodegenerative conditions. Emerging research suggests that regulating autophagy may offer a promising therapeutic avenue for treating certain neurological diseases. Furthermore, existing literature indicates that various small molecule autophagy regulators have been tested in animal models and are linked to neurological disease outcomes. This review explores the role of mitophagy in programmed neuronal death and its connection to neuroinflammation.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
4
|
Moghazy HM, Abdelhaliem NG, Mohammed SA, Hassan A, Abdelrahman A. Liraglutide versus pramlintide in protecting against cognitive function impairment through affecting PI3K/AKT/GSK-3β/TTBK1 pathway and decreasing Tau hyperphosphorylation in high-fat diet- streptozocin rat model. Pflugers Arch 2024; 476:779-795. [PMID: 38536493 PMCID: PMC11033245 DOI: 10.1007/s00424-024-02933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The American Diabetes Association guidelines (2021) confirmed the importance of raising public awareness of diabetes-induced cognitive impairment, highlighting the links between poor glycemic control and cognitive impairment. The characteristic brain lesions of cognitive dysfunction are neurofibrillary tangles (NFT) and senile plaques formed of amyloid-β deposition, glycogen synthase kinase 3 beta (GSK3β), and highly homologous kinase tau tubulin kinase 1 (TTBK1) can phosphorylate Tau proteins at different sites, overexpression of these enzymes produces extensive phosphorylation of Tau proteins making them insoluble and enhance NFT formation, which impairs cognitive functions. The current study aimed to investigate the potential contribution of liraglutide and pramlintide in the prevention of diabetes-induced cognitive dysfunction and their effect on the PI3K/AKT/GSK-3β/TTBK1 pathway in type 2 diabetic (T2D) rat model. T2D was induced by administration of a high-fat diet for 10 weeks, then injection of a single dose of streptozotocin (STZ); treatment was started with either pramlintide (200 μg/kg/day sc) or liraglutide (0.6 mg/kg/day sc) for 6 weeks in addition to the HFD. At the end of the study, cognitive functions were assessed by novel object recognition and T-maze tests. Then, rats were sacrificed for biochemical and histological assessment of the hippocampal tissue. Both pramlintide and liraglutide treatment revealed equally adequate control of diabetes, prevented the decline in memory function, and increased PI3K/AKT expression while decreasing GSK-3β/TTBK1 expression; however, liraglutide significantly decreased the number of Tau positive cells better than pramlintide did. This study confirmed that pramlintide and liraglutide are promising antidiabetic medications that could prevent associated cognitive disorders in different mechanisms.
Collapse
Affiliation(s)
- Hoda M Moghazy
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | | | | | - Asmaa Hassan
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
5
|
Yu S, Liao J, Lin X, Luo Y, Lu G. Crucial role of autophagy in propofol-treated neurological diseases: a comprehensive review. Front Cell Neurosci 2023; 17:1274727. [PMID: 37946715 PMCID: PMC10631783 DOI: 10.3389/fncel.2023.1274727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Neurological disorders are the leading cause of disability and death globally. Currently, there is a significant concern about the therapeutic strategies that can offer reliable and cost-effective treatment for neurological diseases. Propofol is a widely used general intravenous anesthetic in the clinic. Emerging studies demonstrate that propofol exerts neuroprotective effects on neurological diseases and disorders, while its underlying pathogenic mechanism is not well understood. Autophagy, an important process of cell turnover in eukaryotes, has been suggested to involve in the neuroprotective properties developed by propofol. In this narrative review, we summarized the current evidence on the roles of autophagy in propofol-associated neurological diseases. This study highlighted the effect of propofol on the nervous system and the crucial roles of autophagy. According to the 21 included studies, we found that propofol was a double-edged sword for neurological disorders. Several eligible studies reported that propofol caused neuronal cell damage by regulating autophagy, leading to cognitive dysfunction and other neurological diseases, especially high concentration and dose of propofol. However, some of them have shown that in the model of existing nervous system diseases (e.g., cerebral ischemia-reperfusion injury, electroconvulsive therapy injury, cobalt chloride-induced injury, TNF-α-induced injury, and sleep deprivation-induced injury), propofol might play a neuroprotective role by regulating autophagy, thus improving the degree of nerve damage. Autophagy plays a pivotal role in the neurological system by regulating oxidative stress, inflammatory response, calcium release, and other mechanisms, which may be associated with the interaction of a variety of related proteins and signal cascades. With extensive in-depth research in the future, the autophagic mechanism mediated by propofol will be fully understood, which may facilitate the feasibility of propofol in the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sicong Yu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yu Luo
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guangtao Lu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|