1
|
El-Sayed SM, El-Sayed GA, Mansour M A, Haridy Ahmed E, Kamar SA. A comparative study on the effect of melatonin and orlistat combination versus orlistat alone on high fat diet-induced hepatic changes in the adult male albino rats (a histological and morphometric study). Ultrastruct Pathol 2025; 49:20-38. [PMID: 39679624 DOI: 10.1080/01913123.2024.2438380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the extremely usual reason of chronic liver disease, extending from simple hepatic steatosis (HS), nonalcoholic steatohepatitis (NASH) to advanced hepatic fibrosis and cirrhosis. Though orlistat is a Food and Drug Administration (FDA) approved drug for long-duration management of obesity, few cases of severe hepatic insult were declared. Melatonin is an efficient antioxidant; it also regulates metabolic processes that lead to fat accumulation and obesity. AIM OF THE WORK The current research aimed to compare the impact of orlistat, melatonin, and their combination on the structural changes of the hepatic tissue of adult male albino rats supplied with high fat diet (HFD). MATERIAL AND METHODS Thirty adult male albino rats divided into five groups. Liver specimens were divided into two parts. One-half was processed to obtain paraffin blocks, and the other half was processed to obtain semithin sections. Morphometric study and statistical analysis were done. RESULTS Hepatic tissue from the HFD group showed steatosis, ballooning, and inflammation and all these parameters were moderately improved - except for inflammation which worsened with therapy. Combined orlistat and melatonin-treated groups showed marked improvement of all parameters as well as marked improvement in the hepatic fibrosis.Orlistat/Melatonin combination therapy is both safe and effective in comparison to orlistat and melatonin monotherapy.
Collapse
Affiliation(s)
- Sayed M El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Gehan A El-Sayed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Mansour M A
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
| | - Enas Haridy Ahmed
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Medicine, Hail University, Hail, Kingdom of Saudi Arabia
| | - Sherif A Kamar
- Anatomy and Embryology Department, Ain Shams University, Cairo, Egypt
- Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
2
|
Yan Z, Zhang Y, Nan N, Ji S, Lan S, Qin G, Sang N. YTHDC2 mediated RNA m 6A modification contributes to PM 2.5-induced hepatic steatosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135004. [PMID: 38943883 DOI: 10.1016/j.jhazmat.2024.135004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024]
Abstract
Exposure to fine particulate matter (PM2.5) is a significant risk factor for hepatic steatosis. The N6-methyladenosine (m6A) is implicated in metabolic disturbances triggered by exogenous environmental factors. However, the role of m6A in mediating PM2.5-induced hepatic steatosis remains unclear. Herein, male C57BL/6J mice were subjected to PM2.5 exposure throughout the entire heating season utilizing a real-ambient PM2.5 whole-body inhalation exposure system. Concurrently, HepG2 cell models exposed to PM2.5 were developed to delve the role of m6A methylation modification. Following PM2.5 exposure, significant hepatic lipid accumulation and elevated global m6A level were observed both in vitro and in vivo. The downregulation of YTHDC2, an m6A-binding protein, might contribute to this alteration. In vitro studies revealed that lipid-related genes CEPT1 and YWHAH might be targeted by m6A modification. YTHDC2 could bind to CDS region of them and increase their stability. Exposure to PM2.5 shortened mRNA lifespan and suppressed the expression of CEPT1 and YWHAH, which were reversed to baseline or higher level upon the enforced expression of YTHDC2. Consequently, our findings indicate that PM2.5 induces elevated m6A methylation modification of CEPT1 and YWHAH by downregulating YTHDC2, which in turn mediates the decrease in the mRNA stabilization and expression of these genes, ultimately resulting in hepatic steatosis.
Collapse
Affiliation(s)
- Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Shaoyang Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Siyi Lan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
3
|
Yan R, Ji S, Ku T, Sang N. Cross-Omics Analyses Reveal the Effects of Ambient PM 2.5 Exposure on Hepatic Metabolism in Female Mice. TOXICS 2024; 12:587. [PMID: 39195689 PMCID: PMC11360593 DOI: 10.3390/toxics12080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Ambient particulate matter (PM2.5) is a potential risk factor for metabolic damage to the liver. Epidemiological studies suggest that elevated PM2.5 concentrations cause changes in hepatic metabolism, but there is a lack of laboratory evidence. Here, we aimed to evaluate the effects of PM2.5 exposure on liver metabolism in C57BL/6j female mice (10 months old) and to explore the mechanisms underlying metabolic alterations and differential gene expressions by combining metabolomics and transcriptomics analyses. The metabolomics results showed that PM2.5 exposure notably affected the metabolism of amino acids and organic acids and caused hepatic lipid and bile acid accumulation. The transcriptomic analyses revealed that PM2.5 exposure led to a series of metabolic pathway abnormalities, including steroid biosynthesis, steroid hormone biosynthesis, primary bile acid biosynthesis, etc. Among them, the changes in the bile acid pathway might be one of the causes of liver damage in mice. In conclusion, this study clarified the changes in liver metabolism in mice caused by PM2.5 exposure through combined transcriptomic and metabolomic analyses, revealed that abnormal bile acid metabolism is the key regulatory mechanism leading to metabolic-associated fatty liver disease (MAFLD) in mice, and provided laboratory evidence for further clarifying the effects of PM2.5 on body metabolism.
Collapse
Affiliation(s)
| | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (S.J.); (N.S.)
| | | |
Collapse
|
4
|
Feng C, Yang B, Wang Z, Zhang J, Fu Y, Yu B, Dong S, Ma H, Liu H, Zeng H, Reinhardt JD, Yang S. Relationship of long-term exposure to air pollutant mixture with metabolic-associated fatty liver disease and subtypes: A retrospective cohort study of the employed population of Southwest China. ENVIRONMENT INTERNATIONAL 2024; 188:108734. [PMID: 38744043 DOI: 10.1016/j.envint.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND While evidence suggests that PM2.5 is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear. OBJECTIVE To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes. METHODS Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO3-, SO42-, NH4+, organic matter (OM), black carbon (BC), PM2.5, SO2, NO2, O3 and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD. RESULTS Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO42-, NO3-, NH4+, BC, PM2.5, NO2, O3and CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO42- (36.34 %), SO2 (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD. CONCLUSIONS Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO42- were associated with lean MAFLD.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honglian Zeng
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing 210009, China; Department of Health Sciences and Medicine, University of Lucerne, Lucerne 6002, Switzerland.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430079, China.
| |
Collapse
|
5
|
Han X, Guo B, Wang L, Chen K, Zhou H, Huang S, Xu H, Pan X, Chen J, Gao X, Wang Z, Yang L, Laba C, Meng Q, Guo Y, Chen G, Hong F, Zhao X. The mediation role of blood lipids on the path from air pollution exposure to MAFLD: A longitudinal cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166347. [PMID: 37591384 DOI: 10.1016/j.scitotenv.2023.166347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND & AIMS Recent cross-sectional studies found that exposure to ambient air pollution (AP) was associated with an increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD). The alternation of blood lipids may explain the association, but epidemiological evidence is lacking. We aimed to examine whether and to what extent the association between long-term exposure to AP and incident MAFLD is mediated by blood lipids and dyslipidemia in a prospective cohort. METHODS We included 6350 participants from the China Multi-Ethnic Cohort (CMEC, baseline 2018-2019, follow-up 2020-2021). Three-year average (2016-2018) of AP (PM1, PM2.5, PM10, NO2), blood lipids (TC, LDL-C, HDL-C, TG with their combinations) and incident MAFLD for each individual were assessed chronologically. Linear and logistic regression was used to assess the associations among AP, blood lipids, and MAFLD, and the potential mediation effects of blood lipids were evaluated using causal mediation analysis. RESULTS A total of 744 participants were newly diagnosed with MAFLD at follow-up. The odds ratios of MAFLD associated with a 10 μm increase in PM1, PM2.5, and NO2 were 1.35 (95 % CI: 1.14, 1.58), 1.34 (1.10, 1.65) and 1.28 (1.14, 1.44), respectively. Blood lipids are important mediators between AP and incident MAFLD. LDL-C (Proportion Mediated: 6.9 %), non-HDL (13.4 %), HDL-C (20.7 %), LDL/HDL (30.1 %), and dyslipidemia (6.5 %) significantly mediated the association between PM2.5 and MAFLD. For PM1, the indirect effects were similar to those for PM2.5, with a larger value for the direct effect, and the mediation proportion by blood lipids was less for NO2. CONCLUSION Blood lipids are important mediators between AP and MAFLD, and can explain 5 %-30 % of the association between AP and incident MAFLD, particularly cholesterol-related variables, indicating that AP could lead to MAFLD through the alternation of blood lipids. These findings provided mechanical evidence of AP leading to MAFLD in epidemiological studies.
Collapse
Affiliation(s)
- Xinyu Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejun Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Xianmou Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Zhenghong Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - La Yang
- Tibet University, Lhasa, Tibet, China
| | - Ciren Laba
- Tibet Center for Disease Control and Prevention CN, Lhasa, Tibet, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Feng Hong
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zhang Y, Shi J, Ma Y, Yu N, Zheng P, Chen Z, Wang T, Jia G. Association between Air Pollution and Lipid Profiles. TOXICS 2023; 11:894. [PMID: 37999546 PMCID: PMC10675150 DOI: 10.3390/toxics11110894] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/30/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Dyslipidemia is a critical factor in the development of atherosclerosis and consequent cardiovascular disease. Numerous pieces of evidence demonstrate the association between air pollution and abnormal blood lipids. Although the results of epidemiological studies on the link between air pollution and blood lipids are unsettled due to different research methods and conditions, most of them corroborate the harmful effects of air pollution on blood lipids. Mechanism studies have revealed that air pollution may affect blood lipids via oxidative stress, inflammation, insulin resistance, mitochondrial dysfunction, and hypothalamic hormone and epigenetic changes. Moreover, there is a risk of metabolic diseases associated with air pollution, including fatty liver disease, diabetes mellitus, and obesity, which are often accompanied by dyslipidemia. Therefore, it is biologically plausible that air pollution affects blood lipids. The overall evidence supports that air pollution has a deleterious effect on blood lipid health. However, further research into susceptibility, indoor air pollution, and gaseous pollutants is required, and the issue of assessing the effects of mixtures of air pollutants remains an obstacle for the future.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| | - Tiancheng Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China;
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Y.Z.); (J.S.); (Y.M.); (N.Y.); (P.Z.); (G.J.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100083, China
| |
Collapse
|
7
|
Terziev D, Terzieva D. Experimental Data on the Role of Melatonin in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Biomedicines 2023; 11:1722. [PMID: 37371817 DOI: 10.3390/biomedicines11061722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide, its complex pathogenesis remains incompletely understood. The currently stated hypotheses cannot fully clarify the interrelationships between individual pathogenetic mechanisms of the disease. No appropriate health strategies have been developed for treating NAFLD. NAFLD is characterized by an accumulation of triglycerides in hepatic cells (steatosis), with the advanced form known as nonalcoholic steatohepatitis. In the latter, superimposed inflammation can lead to fibrosis. There are scientific data on NAFLD's association with components of metabolic syndrome. Hormonal factors are thought to play a role in the development of metabolic syndrome. Endogenous melatonin, an indoleamine hormone synthesized by the pineal gland mainly at night, is a powerful chronobiotic that probably regulates metabolic processes and has antioxidant, anti-inflammatory, and genomic effects. Extrapineal melatonin has been found in various tissues and organs, including the liver, pancreas, and gastrointestinal tract, where it likely maintains cellular homeostasis. Melatonin exerts its effects on NAFLD at the cellular, subcellular, and molecular levels, affecting numerous signaling pathways. In this review article, we discuss the experimental scientific data accumulated on the involvement of melatonin in the intimate processes of the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Dimitar Terziev
- Second Department of Internal Medicine, Gastroenterology Section, Faculty of Medicine, Medical University, 4002 Plovdiv, Bulgaria
| | - Dora Terzieva
- MDL "Bioiv", Medical University, 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms, and treatment considerations. World J Gastroenterol 2022; 28:5691-5706. [PMID: 36338895 PMCID: PMC9627426 DOI: 10.3748/wjg.v28.i39.5691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
The recently proposed nomenclature change from non-alcoholic fatty liver disease to metabolic dysfunction-associated fatty liver disease (MAFLD) has resulted in the reappraisal of epidemiological trends and associations with other chronic diseases. In this context, MAFLD appears to be tightly linked to incident chronic kidney disease (CKD). This association may be attributed to multiple shared risk factors including type 2 diabetes mellitus, arterial hypertension, obesity, dyslipidemia, and insulin resistance. Moreover, similarities in their molecular pathophysiologic mechanisms can be detected, since inflammation, oxidative stress, fibrosis, and gut dysbiosis are highly prevalent in these pathologic states. At the same time, lines of evidence suggest a genetic predisposition to MAFLD due to gene polymorphisms, such as the PNPLA3 rs738409 G allele polymorphism, which may also propagate renal dysfunction. Concerning their management, available treatment considerations for obesity (bariatric surgery) and novel antidiabetic agents (glucagon-like peptide 1 receptor agonists, sodium-glucose co-transporter 2 inhibitors) appear beneficial in preclinical and clinical studies of MAFLD and CKD modeling. Moreover, alternative approaches such as melatonin supplementation, farnesoid X receptor agonists, and gut microbiota modulation may represent attractive options in the future. With a look to the future, additional adequately sized studies are required, focusing on preventing renal complications in patients with MAFLD and the appropriate management of individuals with concomitant MAFLD and CKD.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Aikaterini Vordoni
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| | - Rigas G Kalaitzidis
- Center for Nephrology “G. Papadakis,” General Hospital of Nikaia-Piraeus “Agios Panteleimon,” Nikaia 18454, Greece
| |
Collapse
|