1
|
Angelucci F, Ai AR, Piendel L, Cerman J, Hort J. Integrating AI in fighting advancing Alzheimer: diagnosis, prevention, treatment, monitoring, mechanisms, and clinical trials. Curr Opin Struct Biol 2024; 87:102857. [PMID: 38838385 DOI: 10.1016/j.sbi.2024.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The application of artificial intelligence (AI) in neurology is a growing field offering opportunities to improve accuracy of diagnosis and treatment of complicated neuronal disorders, plus fostering a deeper understanding of the aetiologies of these diseases through AI-based analyses of large omics data. The most common neurodegenerative disease, Alzheimer's disease (AD), is characterized by brain accumulation of specific pathological proteins, accompanied by cognitive impairment. In this review, we summarize the latest progress on the use of AI in different AD-related fields, such as analysis of neuroimaging data enabling early and accurate AD diagnosis; prediction of AD progression, identification of patients at higher risk and evaluation of new treatments; improvement of the evaluation of drug response using AI algorithms to analyze patient clinical and neuroimaging data; the development of personalized AD therapies; and the use of AI-based techniques to improve the quality of daily life of AD patients and their caregivers.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.
| | - Alice Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Lydia Piendel
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; Augusta University/University of Georgia Medical Partnership, Medical College of Georgia, Athens, GA, USA
| | - Jiri Cerman
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; INDRC, International Neurodegenerative Disorders Research Center, Prague, Czech Republic
| |
Collapse
|
2
|
Ko HYK, Tripathi NK, Mozumder C, Muengtaweepongsa S, Pal I. Real-Time Remote Patient Monitoring and Alarming System for Noncommunicable Lifestyle Diseases. Int J Telemed Appl 2023; 2023:9965226. [PMID: 38020047 PMCID: PMC10681793 DOI: 10.1155/2023/9965226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Telemedicine and remote patient monitoring (RPM) systems have been gaining interest and received adaptation in healthcare sectors since the COVID-19 pandemic due to their efficiency and capability to deliver timely healthcare services while containing COVID-19 transmission. These systems were developed using the latest technology in wireless sensors, medical devices, cloud computing, mobile computing, telecommunications, and machine learning technologies. In this article, a real-time remote patient monitoring system is proposed with an accessible, compact, accurate, and low-cost design. The implemented system is designed to an end-to-end communication interface between medical practitioners and patients. The objective of this study is to provide remote healthcare services to patients who need ongoing care or those who have been discharged from the hospital without affecting their daily routines. The developed monitoring system was then evaluated on 1177 records from MIMIC-III clinical dataset (aged between 19 and 99 years). The performance analysis of the proposed system achieved 88.7% accuracy in generating alerts with logistic regression classification algorithm. This result reflects positively on the quality and robustness of the proposed study. Since the processing time of the proposed system is less than 2 minutes, it can be stated that the system has a high computational speed and is convenient to use in real-time monitoring. Furthermore, the proposed system will fulfil to cover the lower doctor-to-patient ratio by monitoring patients from remote locations and aged people who reside in their residences.
Collapse
Affiliation(s)
- Htet Yamin Ko Ko
- Department of Information and Communication Technologies, School of Engineering and Technology, Asian Institute of Technology, Pathum Thani 12120, Thailand
| | - Nitin Kumar Tripathi
- Department of Information and Communication Technologies, School of Engineering and Technology, Asian Institute of Technology, Pathum Thani 12120, Thailand
| | - Chitrini Mozumder
- Department of Information and Communication Technologies, School of Engineering and Technology, Asian Institute of Technology, Pathum Thani 12120, Thailand
| | - Sombat Muengtaweepongsa
- Center of Excellence in Stroke, Faculty of Medicine, Thammasat University, Pathum Thani 10121, Thailand
| | - Indrajit Pal
- School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Healthcare Engineering JO. Retracted: Artificial Intelligence of Things- (AIoT-) Based Patient Activity Tracking System for Remote Patient Monitoring. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:9834854. [PMID: 37860375 PMCID: PMC10584513 DOI: 10.1155/2023/9834854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/8732213.].
Collapse
|
4
|
Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023; 15:1916. [PMID: 37514102 PMCID: PMC10385763 DOI: 10.3390/pharmaceutics15071916] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Keshava Jetha
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Ph.D. Section, Gujarat Technological University, Ahmedabad 382424, Gujarat, India
| | | | - Hetvi K Solanki
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
5
|
Boikanyo K, Zungeru AM, Sigweni B, Yahya A, Lebekwe C. Remote Patient Monitoring Systems: Applications, Architecture, and Challenges. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
6
|
Famitafreshi G, Afaqui MS, Melià-Seguí J. Enabling Energy Harvesting-Based Wi-Fi System for an e-Health Application: A MAC Layer Perspective. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22103831. [PMID: 35632240 PMCID: PMC9143663 DOI: 10.3390/s22103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 05/17/2023]
Abstract
The adverse impacts of using conventional batteries in the Internet of Things (IoT) devices, such as cost-effective maintenance, numerous battery replacements, and environmental hazards, have led to an interest in integrating energy harvesting technology into IoT devices to extend their lifetime and sustainably effectively. However, this requires improvements in different IoT protocol stack layers, especially in the MAC layer, due to its high level of energy consumption. These improvements are essential in critical applications such as IoT medical devices. In this paper, we simulated a dense solar-based energy harvesting Wi-Fi network in an e-Health environment, introducing a new algorithm for energy consumption mitigation while maintaining the required Quality of Service (QoS) for e-Health. In compliance with the upcoming Wi-Fi amendment 802.11be, the Access Point (AP) coordination-based optimization technique is proposed, where an AP can request dynamic resource rescheduling along with its nearby APs, to reduce the network energy consumption through adjustments within the standard MAC protocol. This paper shows that the proposed algorithm, alongside using solar energy harvesting technology, increases the energy efficiency by more than 40% while maintaining the e-Health QoS requirements. We believe this research will open new opportunities in IoT energy harvesting integration, especially in QoS-restricted environments.
Collapse
Affiliation(s)
- Golshan Famitafreshi
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 154, 08018 Barcelona, Spain;
| | - Muhammad Shahwaiz Afaqui
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK;
| | - Joan Melià-Seguí
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 154, 08018 Barcelona, Spain;
- Faculty of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya (UOC), Rambla del Poblenou, 156, 08018 Barcelona, Spain
- Correspondence: ; Tel.:+34-93-450-5498
| |
Collapse
|