1
|
Yang Y, Zhang L, Wang H, Zhao J, Liu J, Chen Y, Lu J, Duan Y, Hu H, Peng H, Ye L. Development and validation of a risk prediction model for invasiveness of pure ground-glass nodules based on a systematic review and meta-analysis. BMC Med Imaging 2024; 24:149. [PMID: 38886695 PMCID: PMC11184730 DOI: 10.1186/s12880-024-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Assessing the aggressiveness of pure ground glass nodules early on significantly aids in making informed clinical decisions. OBJECTIVE Developing a predictive model to assess the aggressiveness of pure ground glass nodules in lung adenocarcinoma is the study's goal. METHODS A comprehensive search for studies on the relationship between computed tomography(CT) characteristics and the aggressiveness of pure ground glass nodules was conducted using databases such as PubMed, Embase, Web of Science, Cochrane Library, Scopus, Wanfang, CNKI, VIP, and CBM, up to December 20, 2023. Two independent researchers were responsible for screening literature, extracting data, and assessing the quality of the studies. Meta-analysis was performed using Stata 16.0, with the training data derived from this analysis. To identify publication bias, Funnel plots and Egger tests and Begg test were employed. This meta-analysis facilitated the creation of a risk prediction model for invasive adenocarcinoma in pure ground glass nodules. Data on clinical presentation and CT imaging features of patients treated surgically for these nodules at the Third Affiliated Hospital of Kunming Medical University, from September 2020 to September 2023, were compiled and scrutinized using specific inclusion and exclusion criteria. The model's effectiveness for predicting invasive adenocarcinoma risk in pure ground glass nodules was validated using ROC curves, calibration curves, and decision analysis curves. RESULTS In this analysis, 17 studies were incorporated. Key variables included in the model were the largest diameter of the lesion, average CT value, presence of pleural traction, and spiculation. The derived formula from the meta-analysis was: 1.16×the largest lesion diameter + 0.01 × the average CT value + 0.66 × pleural traction + 0.44 × spiculation. This model underwent validation using an external set of 512 pure ground glass nodules, demonstrating good diagnostic performance with an ROC curve area of 0.880 (95% CI: 0.852-0.909). The calibration curve indicated accurate predictions, and the decision analysis curve suggested high clinical applicability of the model. CONCLUSION We established a predictive model for determining the invasiveness of pure ground-glass nodules, incorporating four key radiological indicators. This model is both straightforward and effective for identifying patients with a high likelihood of invasive adenocarcinoma.
Collapse
Affiliation(s)
- Yantao Yang
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Han Wang
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Jie Zhao
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Jun Liu
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yun Chen
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Jiagui Lu
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China
| | - Yaowu Duan
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Huilian Hu
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China
| | - Hao Peng
- Department of Thoracic Surgery, The First People's Hospital Of Yunnan Province, Kunming City, Yunnan Province, China.
| | - Lianhua Ye
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Kunming, China.
| |
Collapse
|
2
|
Yang Y, Xu J, Wang W, Ma M, Huang Q, Zhou C, Zhao J, Duan Y, Luo J, Jiang J, Ye L. A nomogram based on the quantitative and qualitative features of CT imaging for the prediction of the invasiveness of ground glass nodules in lung adenocarcinoma. BMC Cancer 2024; 24:438. [PMID: 38594670 PMCID: PMC11005224 DOI: 10.1186/s12885-024-12207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
PURPOSE Based on the quantitative and qualitative features of CT imaging, a model for predicting the invasiveness of ground-glass nodules (GGNs) was constructed, which could provide a reference value for preoperative planning of GGN patients. MATERIALS AND METHODS Altogether, 702 patients with GGNs (including 748 GGNs) were included in this study. The GGNs operated between September 2020 and July 2022 were classified into the training group (n = 555), and those operated between August 2022 and November 2022 were classified into the validation group (n = 193). Clinical data and the quantitative and qualitative features of CT imaging were harvested from these patients. In the training group, the quantitative and qualitative characteristics in CT imaging of GGNs were analyzed by using performing univariate and multivariate logistic regression analyses, followed by constructing a nomogram prediction model. The differentiation, calibration, and clinical practicability in both the training and validation groups were assessed by the nomogram models. RESULTS In the training group, multivariate logistic regression analysis disclosed that the maximum diameter (OR = 4.707, 95%CI: 2.06-10.758), consolidation/tumor ratio (CTR) (OR = 1.027, 95%CI: 1.011-1.043), maximum CT value (OR = 1.025, 95%CI: 1.004-1.047), mean CT value (OR = 1.035, 95%CI: 1.008-1.063; P = 0.012), spiculation sign (OR = 2.055, 95%CI: 1.148-3.679), and vascular convergence sign (OR = 2.508, 95%CI: 1.345-4.676) were independent risk parameters for invasive adenocarcinoma. Based on these findings, we established a nomogram model for predicting the invasiveness of GGN, and the AUC was 0.910 (95%CI: 0.885-0.934) and 0.902 (95%CI: 0.859-0.944) in the training group and the validation group, respectively. The internal validation of the Bootstrap method showed an AUC value of 0.905, indicating a good differentiation of the model. Hosmer-Lemeshow goodness of fit test for the training and validation groups indicated that the model had a good fitting effect (P > 0.05). Furthermore, the calibration curve and decision analysis curve of the training and validation groups reflected that the model had a good calibration degree and clinical practicability. CONCLUSION Combined with the quantitative and qualitative features of CT imaging, a nomogram prediction model can be created to forecast the invasiveness of GGNs. This model has good prediction efficacy for the invasiveness of GGNs and can provide help for the clinical management and decision-making of GGNs.
Collapse
Affiliation(s)
- Yantao Yang
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Jing Xu
- Department of Dermatology and Venereal Diseases, Yan'an Hospital of Kunming City, Kunming, China
| | - Wei Wang
- Department of Thoracic and Cardiovascular Surgery, Shiyan Taihe Hospital (Hubei University of Medicine), Hubei, Shiyan, China
| | - Mingsheng Ma
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Qiubo Huang
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Chen Zhou
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Jie Zhao
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Yaowu Duan
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China
| | - Jia Luo
- Department of Pathology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiezhi Jiang
- Department of Radiology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lianhua Ye
- Department of Thoracic and Cardiovascular Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, No. 519 Kunzhou Road, Xishan District, Yunnan Province, Kunming, China.
| |
Collapse
|
3
|
Wang H, Chen A, Wang K, Yang H, Wen W, Ren Q, Chen L, Xu X, Zhu Q. CT imaging features of lung ground-glass nodule patients with upgraded intraoperative frozen pathology. Discov Oncol 2024; 15:29. [PMID: 38310621 PMCID: PMC10838864 DOI: 10.1007/s12672-024-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
PURPOSE Intraoperative frozen section pathology (FS) is widely used to guide surgical strategies while the accuracy is relatively low. Underestimating the pathological condition may result in inadequate surgical margins. This study aims to identify CT imaging features related to upgraded FS and develop a predictive model. METHODS Collected data from 860 patients who underwent lung surgery from January to December 2019. We analyzed the consistency rate of FS and categorized the patients into three groups: Group 1 (n = 360) had both FS and Formalin-fixed Paraffin-embedded section (FP) as non-invasive adenocarcinoma (IAC); Group 2 (n = 128) had FS as non-IAC but FP as IAC; Group 3 (n = 372) had both FS and FP as IAC. Clinical baseline characteristics were compared and propensity score adjustment was used to mitigate the effects of these characteristics. Univariate analyses identified imaging features with inter-group differences. A multivariate analysis was conducted to screen independent risk factors for FS upgrade, after which a logistic regression prediction model was established and a receiver operating characteristic (ROC) curve was plotted. RESULTS The consistency rate of FS with FP was 84.19%. 26.67% of the patients with non-IAC FS diagnosis were upgraded to IAC. The predictive model's Area Under Curve (AUC) is 0.785. Consolidation tumor ratio (CTR) ≤ 0.5 and smaller nodule diameter are associated with the underestimation of IAC in FS. CONCLUSION CT imaging has the capacity to effectively detect patients at risk of upstaging during FS.
Collapse
Affiliation(s)
- Hongya Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Aiping Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Kun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - He Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Qianrui Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xinfeng Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
4
|
Guo M, Cao Z, Huang Z, Hu S, Xiao Y, Ding Q, Liu Y, An X, Zheng X, Zhang S, Zhang G. The value of CT shape quantification in predicting pathological classification of lung adenocarcinoma. BMC Cancer 2024; 24:35. [PMID: 38178062 PMCID: PMC10768264 DOI: 10.1186/s12885-023-11802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE To evaluate whether quantification of lung GGN shape is useful in predicting pathological categorization of lung adenocarcinoma and guiding the clinic. METHODS 98 patients with primary lung adenocarcinoma were pathologically confirmed and CT was performed preoperatively, and all lesions were pathologically ≤ 30 mm in size. On CT images, we measured the maximum area of the lesion's cross-section (MA). The longest diameter of the tumor (LD) was marked with points A and B, and the perpendicular diameter (PD) was marked with points C and D, which was the longest diameter perpendicular to AB. and D, which was the longest diameter perpendicular to AB. We took angles A and B as big angle A (BiA) and small angle A (SmA). We measured the MA, LD, and PD, and for analysis we derived the LD/PD ratio and the BiA/SmA ratio. The data were analysed using the chi-square test, t-test, ROC analysis, and binary logistic regression analysis. RESULTS Precursor glandular lesions (PGL) and microinvasive adenocarcinoma (MIA) were distinguished from invasive adenocarcinoma (IAC) by the BiA/SmA ratio and LD, two independent factors (p = 0.007, p = 0.018). Lung adenocarcinoma pathological categorization was indicated by the BiA/SmA ratio of 1.35 and the LD of 11.56 mm with sensitivity of 81.36% and 71.79%, respectively; specificity of 71.79% and 74.36%, respectively; and AUC of 0.8357 (95% CI: 0.7558-0.9157, p < 0.001), 0.8666 (95% CI: 0.7866-0.9465, p < 0.001), respectively. In predicting the pathological categorization of lung adenocarcinoma, the area under the ROC curve of the BiA/SmA ratio combined with LD was 0.9231 (95% CI: 0.8700-0.9762, p < 0.001), with a sensitivity of 81.36% and a specificity of 89.74%. CONCLUSIONS Quantification of lung GGN morphology by the BiA/SmA ratio combined with LD could be helpful in predicting pathological classification of lung adenocarcinoma.
Collapse
Affiliation(s)
- Mingjie Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Zhan Cao
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450000, Zhengzhou, China
| | - Zhichao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Shaowen Hu
- Department of Clinical Medicine, Medical School of Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Clinical Medicine, Medical School of Henan University, Kaifeng, China
| | - Qianzhou Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Yalong Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Xiaokang An
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Xianjie Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Shuanglin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China
| | - Guoyu Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Henan University, Longting District, 475000, Kaifeng, Henan Province, China.
| |
Collapse
|
5
|
Gao R, Gao Y, Zhang J, Zhu C, Zhang Y, Yan C. A nomogram for predicting invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodules: incorporating subjective CT signs and histogram parameters based on artificial intelligence. J Cancer Res Clin Oncol 2023; 149:15323-15333. [PMID: 37624396 DOI: 10.1007/s00432-023-05262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE To construct a nomogram based on subjective CT signs and artificial intelligence (AI) histogram parameters to identify invasiveness of lung adenocarcinoma presenting as pure ground-glass nodules (pGGNs) and to evaluate its diagnostic performance. METHODS 187 patients with 228 pGGNs confirmed by postoperative pathology were collected retrospectively and divided into pre-invasive group [atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS)] and invasive group [minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC)]. All pGGNs were randomly assigned to training cohort (n = 160) and validation cohort (n = 68). Nomogram was developed using subjective CT signs and AI-based histogram parameters by logistic regression analysis. The diagnostic performance was evaluated by receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) curve. RESULTS The nomogram was constructed with nodule shape, 3D mean diameter, maximum CT value, and skewness. It showed better discriminative power in differentiating invasive lesions from pre-invasive lesions with area under curve (AUC) of 0.849 (95% CI 0.790-0.909) in the training cohort and 0.831 (95% CI 0.729-0.934) in the validation cohort, which performed better than nodule shape (AUC 0.675, 95% CI 0.609-0.741), 3D mean diameter (AUC 0.762, 95% CI 0.688-0.835), maximum CT value (AUC 0.794, 95% CI 0.727-0.862), or skewness (AUC 0.594, 95% CI 0.506-0.682) alone in training cohort (for all, P < 0.05). CONCLUSION For pulmonary pGGNs, the nomogram based on subjective CT signs and AI histogram parameters had a good predictive ability to discriminate invasive lung adenocarcinoma from pre-invasive lung adenocarcinoma, and it has the potential to improve diagnostic efficiency and to help the patient management.
Collapse
Affiliation(s)
- Rongji Gao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China
| | - Yinghua Gao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China
| | - Juan Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China
| | - Chunyu Zhu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China
| | - Yue Zhang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China.
| | - Chengxin Yan
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, Shandong Province, China.
| |
Collapse
|
6
|
Zhao B, Wang X, Sun K, Kang H, Zhang K, Yin H, Liu K, Xiao Y, Liu S. Correlation Between Intranodular Vessels and Tumor Invasiveness of Lung Adenocarcinoma Presenting as Ground-glass Nodules: A Deep Learning 3-Dimensional Reconstruction Algorithm-based Quantitative Analysis on Noncontrast Computed Tomography Images. J Thorac Imaging 2023; 38:297-303. [PMID: 37531613 DOI: 10.1097/rti.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE To evaluate the role of quantitative features of intranodular vessels based on deep learning in distinguishing pulmonary adenocarcinoma invasiveness. MATERIALS AND METHODS This retrospective study included 512 confirmed ground-glass nodules from 474 patients with 241 precursor glandular lesions (PGL), 126 minimally invasive adenocarcinomas (MIA), and 145 invasive adenocarcinomas (IAC). The pulmonary blood vessels were reconstructed on noncontrast computed tomography images using deep learning-based region-segmentation and region-growing techniques. The presence of intranodular vessels was evaluated based on the automatic calculation of vessel prevalence, vascular categories, and vessel volume percentage. Further comparisons were made between different invasive groups by the Mantel-Haenszel χ 2 test, χ 2 test, and analysis of variance. RESULTS The detection rate of intranodular vessels in PGL (33.2%) was significantly lower than that of MIA (46.8%, P = 0.011) and IAC (55.2%, P < 0.001), while the vascular categories were similar (all P > 0.05). Vascular changes were more common in IAC and MIA than in PGL, mainly in increased vessel volume percentage (12.4 ± 19.0% vs. 6.3 ± 13.1% vs. 3.9 ± 9.4%, P < 0.001). The average intranodular artery and vein volume percentage of IAC (7.5 ± 14.0% and 5.0 ± 10.1%) was higher than that of PGL (2.1 ± 6.9% and 1.7 ± 5.8%) and MIA (3.2 ± 9.1% and 3.1 ± 8.7%), with statistical significance (all P < 0.05). CONCLUSIONS The quantitative analysis of intranodular vessels on noncontrast computed tomography images demonstrated that the ground-glass nodules with increased internal vessel prevalence and volume percentages had higher possibility of tumor invasiveness.
Collapse
Affiliation(s)
- Baolian Zhao
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Ke Sun
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Han Kang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd, Ocean International Center, Beijing, China
| | - Kai Zhang
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd, Ocean International Center, Beijing, China
| | - Hongkun Yin
- Institute of Advanced Research, Infervision Medical Technology Co. Ltd, Ocean International Center, Beijing, China
| | - Kai Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Yi Xiao
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai
| |
Collapse
|
7
|
Methods in Medicine CAM. Retracted: CT-Assisted Improvements in the Accuracy of the Intraoperative Frozen Section Examination of Ground-Glass Density Nodules. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9843549. [PMID: 37416205 PMCID: PMC10322419 DOI: 10.1155/2023/9843549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/8967643.].
Collapse
|