1
|
Yang G, Yin Q, Wang W, Xu S, Liu H. Prognostic role of CRABP2 in lung cancer: a meta-analysis. J Cardiothorac Surg 2024; 19:366. [PMID: 38915108 PMCID: PMC11194904 DOI: 10.1186/s13019-024-02887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/15/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The prognostic value of cellular retinoic acid-binding protein 2 (CRABP2), in lung cancer patients remains to be uncertained. Therefore, our research attempted to assess the relationship between CRABP2 and survival analysis in lung cancer patients through meta-analysis. METHOD Related literature retrieved from Cochrane Library, Ovid, Embase, PubMed, the CNKI, and the Web of Science. The latest update of the search was May 1, 2023. The outcome indicators included as effective measures in the study were hazard ratio (HR), and 95% confidence interval (CI). The Stata 12.0 software was used to analyze the data. RESULTS A total of4 studies were finally enrolled in our meta-analysis. The increased plasma level of CRABP2 predicted poor OS in lung cancer patient with a combined HR of 1.14 (95% CI: 1.00-1.30), and were not associated with poor PFS with combined HR: 1.15% CI: 0.63-2.09) in lung cancer patients. CONCLUSIONS Our meta-analysis found the increased plasma level of CRABP2 was associated with poor OS independently in NSCLC patients. The plasma CRABP2 level may be an indicator of biological aggressiveness of the tumor. Our research was promising regarding the feasibility and utility of plasma CRABP2 as a novel prognostic biomarker in NSCLC, and the findings warrant further investigation.
Collapse
Affiliation(s)
- Guang Yang
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Qifan Yin
- Department of Thoracic Surgery, Hebei Provincal General Hospital, No.348,West He-Ping Road, XinHua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Wenhao Wang
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Siwei Xu
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Huining Liu
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, No. 89 Donggang Street, Yuhua District, Shijiazhuang, 050031, Hebei Province, People's Republic of China.
| |
Collapse
|
2
|
Liguoro D, Frigerio R, Ortolano A, Sacconi A, Acunzo M, Romano G, Nigita G, Bellei B, Madonna G, Capone M, Ascierto PA, Mancini R, Ciliberto G, Fattore L. The MITF/mir-579-3p regulatory axis dictates BRAF-mutated melanoma cell fate in response to MAPK inhibitors. Cell Death Dis 2024; 15:208. [PMID: 38472212 DOI: 10.1038/s41419-024-06580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.
Collapse
Affiliation(s)
- Domenico Liguoro
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Rachele Frigerio
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Arianna Ortolano
- Department of Anatomy, Histology, Forensic- Medicine and Orthopedics, Sapienza University of Rome, 00161, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatological Institute, IRCCS, 00144, Rome, Italy
| | - Gabriele Madonna
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Mariaelena Capone
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
- Faculty of Medicine and Psychology, Department Clinical and Molecular Medicine, Sant'Andrea Hospital-Sapienza University of Rome, 00118, Rome, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCSS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| |
Collapse
|
3
|
Fu X, Zhang Q, Wang Z, Xu Y, Dong Q. CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. Cell Death Dis 2024; 15:21. [PMID: 38195606 PMCID: PMC10776574 DOI: 10.1038/s41419-023-06398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Ovarian cancer is the most lethal malignancy among gynecologic cancers, and primary and secondary chemotherapy resistance is one of the important reasons for poor prognosis of ovarian cancer patients. However, the specifics of resistance to chemotherapy in ovarian cancer remain unclear. Herein, we find that the expression level of cellular retinoic acid binding protein 2 (CRABP2) is up-regulated in drug-resistant ovarian cancer tissues and cell lines, and the expression levels of CRABP2 in epithelial ovarian cancer tissues are closely related to tumor clinical stage and patients' prognosis, suggesting that CRABP2 plays an important role in the progression of ovarian cancer and the corresponding ability of tumor to chemotherapy. With the in-depth study, we demonstrates that CRABP2 is related to the high metabolic activity in drug-resistant cells, and all-trans retinoic acid exacerbates this activity. Further molecular mechanism exploration experiments show that CRABP2 not only up-regulates the expression level of HIF1α, but also increases the localization of HIF1α in the nucleus. In drug-resistant ovarian cancer cells, knocking down HIF1α can block the resistance of CRABP2 to chemotherapy drugs in ovarian cancer cells. Taken together, our findings suggest for the first time that CRABP2 affects chemotherapy resistance of ovarian cancer by regulating the expression of HIF1α. This study provides a possible molecular mechanism for drug resistance and a possible molecular target for clinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Fu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| | - Qian Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Medical Affairs Office, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300060, China
| | - Zhaosong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory Animal Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yue Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qiuping Dong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
4
|
Methods in Medicine CAM. Retracted: MiR-579 Inhibits Lung Adenocarcinoma Cell Proliferation and Metastasis via Binding to CRABP2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9892542. [PMID: 37538489 PMCID: PMC10396537 DOI: 10.1155/2023/9892542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/9111681.].
Collapse
|
5
|
miR‑29a‑3p inhibits the malignant characteristics of non‑small cell lung cancer cells by reducing the activity of the Wnt/β‑catenin signaling pathway. Oncol Lett 2022; 24:379. [PMID: 36238844 PMCID: PMC9494602 DOI: 10.3892/ol.2022.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) can influence non-small cell lung cancer (NSCLC) in a tumor-suppressive and oncogenic manner. The present study aimed to investigate the effects and underlying mechanisms of miR-29a-3p in NSCLC. NSCLC cell lines (A549, H1299, and H460) and a normal lung epithelial cell line (BEAS-2B) were used. Additionally, a mouse lung tumor xenograft model was established using A549 cells and used to determine the effects of miR-29a-3p on NSCLC in vivo. Tumor volumes were measured every week. The expression of miR-29a-3p in cells and lung tissues were detected by RT-qPCR. Cell proliferation was detected using Cell Counting Kit-8 and EdU assays. Migration and invasion were assessed using wound healing and Transwell invasion assays, respectively. Ki-67 expression was detected using immunohistochemical staining. The expression levels of Wnt3a and β-catenin were determined using western blotting. miR-29a-3p expression was significantly downregulated in NSCLC cells and mice. In contrast to miR-29a-3p knockdown, miR-29a-3p overexpression decreased NSCLC cell proliferation, migration, and invasion as well as tumor growth in in the NSCLC mouse model. Moreover, miR-29a-3p overexpression decreased the protein expression levels of Wnt3a and β-catenin. The inhibitory effects of miR-29a-3p on NSCLC cells were reversed by LiCl (an activator of the Wnt signaling pathway). In conclusion, miR-29a-3p prevented NSCLC tumor growth and cell proliferation, migration, and invasion by inhibiting the Wnt/β-catenin signaling pathway. This finding offers novel insights into the prognosis and treatment of NSCLC.
Collapse
|