1
|
Giordo R, Ahmadi FAM, Husaini NA, Al-Nuaimi NRA, Ahmad SM, Pintus G, Zayed H. microRNA 21 and long non-coding RNAs interplays underlie cancer pathophysiology: A narrative review. Noncoding RNA Res 2024; 9:831-852. [PMID: 38586315 PMCID: PMC10995982 DOI: 10.1016/j.ncrna.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a diverse group of functional RNA molecules that lack the ability to code for proteins. Despite missing this traditional role, ncRNAs have emerged as crucial regulators of various biological processes and have been implicated in the development and progression of many diseases, including cancer. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two prominent classes of ncRNAs that have emerged as key players in cancer pathophysiology. In particular, miR-21 has been reported to exhibit oncogenic roles in various forms of human cancer, including prostate, breast, lung, and colorectal cancer. In this context, miR-21 overexpression is closely associated with tumor proliferation, growth, invasion, angiogenesis, and chemoresistance, whereas miR-21 inactivation is linked to the regression of most tumor-related processes. Accordingly, miR-21 is a crucial modulator of various canonical oncogenic pathways such as PTEN/PI3K/Akt, Wnt/β-catenin, STAT, p53, MMP2, and MMP9. Moreover, interplays between lncRNA and miRNA further complicate the regulatory mechanisms underlying tumor development and progression. In this regard, several lncRNAs have been found to interact with miR-21 and, by functioning as competitive endogenous RNAs (ceRNAs) or miRNA sponges, can modulate cancer tumorigenesis. This work presents and discusses recent findings highlighting the roles and pathophysiological implications of the miR-21-lncRNA regulatory axis in cancer occurrence, development, and progression. The data collected indicate that specific lncRNAs, such as MEG3, CASC2, and GAS5, are strongly associated with miR-21 in various types of cancer, including gastric, cervical, lung, and glioma. Indeed, these lncRNAs are well-known tumor suppressors and are commonly downregulated in different types of tumors. Conversely, by modulating various mechanisms and oncogenic signaling pathways, their overexpression has been linked with preventing tumor formation and development. This review highlights the significance of these regulatory pathways in cancer and their potential for use in cancer therapy as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
| | - Fatemeh Abdullah M. Ahmadi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nedal Al Husaini
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Rashid A.M. Al-Nuaimi
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Salma M.S. Ahmad
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
2
|
Yu Y, Fan K, Ni T, Zhang XL, Su X, Yang L. Expression level and clinical significance of NBAT-1 in human cancers: a systematic review and meta-analysis. BMC Cancer 2024; 24:109. [PMID: 38243168 PMCID: PMC10799500 DOI: 10.1186/s12885-023-11770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024] Open
Abstract
PURPOSE There is an aberrant expression of NBAT-1 in various human cancers, which was proven to limit the proliferation, invasion, and metastasis of tumour cells via multiple approaches. Most existing research focuses on sample size and discrete outcomes. Thus, a quantitative meta-analysis was performed to elucidate the prognostic value of lncRNA NBAT-1 expression in cancer patients. MATERIALS AND METHODS Using Web of Science and PubMed, two researchers independently identified relevant studies to explore the association between the pathological features of human cancers and NBAT-1 expression levels. Then two scholars conducted literature screening according to exclusion criteria and admission criteria, and finally conducted statistical analysis through data extraction with StataSE 12.0. RESULTS A total of 12 eligible studies with 1600 patients were included in the meta-analysis eventually. It is indicated that the low expression level of lncRNA NBAT-1 was closely related to distant metastasis [RR = 0.50, 95% CI (0.33, 0.76), and P = 0.00], deep tumour invasion [RR = 0.62, 95% CI (0.49,0.80), and P = 0.00], poor histological grade [RR = 0.68, 95% CI (0.57, 0.81), and P = 0.00], advanced TNM stage [RR = 0.66, 95% CI (0.55, 0.79), and P = 0.00], large tumour volume[RR = 0.72, 95% CI (0.55, 0.93), and P = 0.01], and lymph node metastasis [RR = 0.62, 95% CI (0.46, 0.84), and P = 0.00], suggesting that it may serve as biomarkers for patients with poor prognosis. CONCLUSION Reduced expression of NBAT-1 can predict poor prognosis in several cancers, as found in the meta-analysis, demonstrating that NBAT-1 can serve as a promising prognostic factor of human cancers.
Collapse
Affiliation(s)
- Yang Yu
- Department of Oncology, Affiliated Tumour Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Kedi Fan
- Department of Medical School, Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Tingting Ni
- Department of Oncology, Affiliated Tumour Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Xun Lei Zhang
- Department of Oncology, Affiliated Tumour Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Xiaoqin Su
- Department of Oncology, Affiliated Tumour Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Lei Yang
- Department of Oncology, Affiliated Tumour Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Methods in Medicine CAM. Retracted: lncRNA NBAT1 Inhibits Cell Metastasis and Promotes Apoptosis in Endometrial Cancer by Sponging miR-21-5p to Regulate PTEN. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:9758785. [PMID: 37799419 PMCID: PMC10550456 DOI: 10.1155/2023/9758785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
[This retracts the article DOI: 10.1155/2022/9304392.].
Collapse
|
5
|
Huldani H, Alshahrani SH, Almajidi YQ, Romero-Parra RM, Hjazi A, Alsaab HO, Oudaha KH, Hussien BM, Ahmed M, Fard SRH. miR-495-3p as a promising tumor suppressor in human cancers. Pathol Res Pract 2023; 248:154610. [PMID: 37307621 DOI: 10.1016/j.prp.2023.154610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Noncoding RNAs are a type of cellular RNA not having the ability to translate into proteins. As an important type of ncRNA with a length of about 22 nucleotides (nt), microRNAs were revealed to contribute to regulating the various cellular functions via regulating the protein translation of target genes. Among them, available studies proposed that miR-495-3p is a pivotal player in cancer pathogenesis. These studies showed that the expression level of miR-495-3p decreased in various cancer cells, suggesting its tumor suppressor role in cancer pathogenesis. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are the important regulators of miR-495-3p via sponging it, leading to increased expression levels of its target genes. Moreover, miR-495-3p was shown to have a promising potential to be a prognostic and diagnostic biomarker in cancer. MiR-495-3p also could affect the resistance of cancer cells to chemotherapy agents. Here, we discussed the molecular mechanisms of miR-495-3p in various cancer including breast cancer. In addition, we discussed the miR-495-3p potential as a prognostic and diagnostic biomarker as well as its activity in cancer chemotherapy. Finally, we discussed the current limitations regarding the use of microRNAs in clinics and the future prospects of microRNAs.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | - Yasir Qasim Almajidi
- Department of pharmacy (pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Piergentili R, Gullo G, Basile G, Gulia C, Porrello A, Cucinella G, Marinelli E, Zaami S. Circulating miRNAs as a Tool for Early Diagnosis of Endometrial Cancer-Implications for the Fertility-Sparing Process: Clinical, Biological, and Legal Aspects. Int J Mol Sci 2023; 24:11356. [PMID: 37511115 PMCID: PMC10379073 DOI: 10.3390/ijms241411356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This review article explores the possibility of developing an integrated approach to the management of the different needs of endometrial cancer (EC) patients seeking to become pregnant. Life preservation of the woman, health preservation of the baby, a precocious and-as much as possible-minimally invasive characterization of the health and fertility parameters of the patient, together with the concerns regarding the obstetric, neonatal, and adult health risks of the children conceived via assisted reproductive techniques (ART) are all essential aspects of the problem to be taken into consideration, yet the possibility to harmonize such needs through a concerted and integrated approach is still very challenging. This review aims to illustrate the main features of EC and how it affects the normal physiology of pre-menopausal women. We also focus on the prospect of a miR-based, molecular evaluation of patient health status, including both EC early diagnosis and staging and, similarly, the receptivity of the woman, discussing the possible evaluation of both aspects using a single specific panel of circulating miRs in the patient, thus allowing a relatively fast, non-invasive testing with a significantly reduced margin of error. Finally, the ethical and legal/regulatory aspects of such innovative techniques require not only a risk-benefit analysis; respect for patient autonomy and equitable health care access allocation are fundamental issues as well.
Collapse
Affiliation(s)
- Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR (IBPM-CNR), 00185 Rome, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, 90146 Palermo, Italy
| | | | - Caterina Gulia
- Dipartimento di Urologia, Ospedale della Misericordia, 58100 Grosseto, Italy
| | - Alessandro Porrello
- Lineberger Comprehensive Cancer Center & RNA Discovery Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599, USA
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, 90146 Palermo, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
8
|
Li K, Gong Q, Xiang XD, Guo G, Liu J, Zhao L, Li J, Chen N, Li H, Zhang LJ, Zhou CY, Wang ZY, Zhuang L. HNRNPA2B1-mediated m 6A modification of lncRNA MEG3 facilitates tumorigenesis and metastasis of non-small cell lung cancer by regulating miR-21-5p/PTEN axis. J Transl Med 2023; 21:382. [PMID: 37308993 DOI: 10.1186/s12967-023-04190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Accumulating data indicate that N6-methyladenosine (m6A) RNA methylation and lncRNA deregulation act crucial roles in cancer progression. Heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1) as an m6A "reader" has been reported to be an oncogene in multiple malignancies. We herein aimed to elucidate the role and underlying mechanism by which HNRNPA2B1-mediated m6A modification of lncRNAs contributes to non-small cell lung cancer (NSCLC). METHODS The expression levels of HNRNPA2B1 and their association with the clinicopathological characteristics and prognosis in NSCLC were determined by RT-qPCR, Western blot, immunohistochemistry and TCGA dataset. Then, the role of HNRNPA2B1 in NSCLC cells was assessed by in vitro functional experiments and in vivo tumorigenesis and lung metastasis models. HNRNPA2B1-mediated m6A modification of lncRNAs was screened by m6A-lncRNA epi-transcriptomic microarray and verified by methylated RNA immunoprecipitation (Me-RIP). The lncRNA MEG3-specific binding with miR-21-5p was evaluated by luciferase gene report and RIP assays. The effects of HNRNPA2B1 and (or) lncRNA MEG3 on miR-21-5p/PTEN/PI3K/AKT signaling were examined by RT-qPCR and Western blot analyses. RESULTS We found that upregulation of HNRNPA2B1 was associated with distant metastasis and poor survival, representing an independent prognostic factor in patients with NSCLC. Knockdown of HNRNPA2B1 impaired cell proliferation and metastasis in vitro and in vivo, whereas ectopic expression of HNRNPA2B1 possessed the opposite effects. Mechanical investigations revealed that lncRNA MEG3 was an m6A target of HNRNPA2B1 and inhibition of HNRNPA2B1 decreased MEG3 m6A levels but increased its mRNA levels. Furthermore, lncRNA MEG3 could act as a sponge of miR-21-5p to upregulate PTEN and inactivate PI3K/AKT signaling, leading to the suppression of cell proliferation and invasion. Low expression of lncRNA MEG3 or elevated expression of miR-21-5p indicated poor survival in patients with NSCLC. CONCLUSIONS Our findings uncover that HNRNPA2B1-mediated m6A modification of lncRNA MEG3 promotes tumorigenesis and metastasis of NSCLC cells by regulating miR-21-5p/PTEN axis and may provide a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ke Li
- Department of Cancer Biotherapy Center, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Quan Gong
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Xu-Dong Xiang
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Gang Guo
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jia Liu
- Laboratory Zoology Department, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Li Zhao
- Department of Anesthesiology, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Jun Li
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Nan Chen
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Heng Li
- Department of Thoracic Surgery, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan, China
| | - Li-Juan Zhang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Chun-Yan Zhou
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Zhi-Yong Wang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China
| | - Li Zhuang
- Department of Rehabilitation and Palliative Medicine, Yunnan Cancer Hospital, the Third Affiliated Hospital of Kunming Medical University, Number 519 Kunzhou Road, Kunming, 650118, Yunnan, China.
| |
Collapse
|
9
|
Hashemi M, Mirdamadi MSA, Talebi Y, Khaniabad N, Banaei G, Daneii P, Gholami S, Ghorbani A, Tavakolpournegari A, Farsani ZM, Zarrabi A, Nabavi N, Zandieh MA, Rashidi M, Taheriazam A, Entezari M, Khan H. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol Res 2023; 187:106568. [PMID: 36423787 DOI: 10.1016/j.phrs.2022.106568] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Motahare Sadat Ayat Mirdamadi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Nasrin Khaniabad
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pouria Daneii
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Zoheir Mohammadian Farsani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|