1
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Luobin L, Wanxin H, Yingxin G, Qinzhou Z, Zefeng L, Danyang W, Huaqin L. Nanomedicine-induced programmed cell death in cancer therapy: mechanisms and perspectives. Cell Death Discov 2024; 10:386. [PMID: 39209834 PMCID: PMC11362291 DOI: 10.1038/s41420-024-02121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The balance of programmed cell death (PCD) mechanisms, including apoptosis, autophagy, necroptosis and others, is pivotal in cancer progression and treatment. Dysregulation of these pathways results in uncontrolled cell growth and resistance to conventional therapies. Nanomedicine offers a promising solution in oncology through targeted drug delivery enabling precise targeting of cancer cells while preserving healthy tissues. This approach reduces the side effects of traditional chemotherapy and enhances treatment efficacy by engaging PCD pathways. We details each PCD pathway, their mechanisms, and innovative nanomedicine strategies to activate these pathways, thereby enhancing therapeutic specificity and minimizing harm to healthy tissues. The precision of nanotechnology in targeting PCD pathways promises significant improvements in cancer treatment outcomes. This synergy between nanotechnology and targeted PCD activation could lead to more effective and less toxic cancer therapies, heralding a new era in cancer treatment.
Collapse
Affiliation(s)
- Lin Luobin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - He Wanxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Guo Yingxin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Zheng Qinzhou
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Liang Zefeng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wu Danyang
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China
| | - Li Huaqin
- School of Health Sciences, Guangzhou Xinhua University, 19 Huamei Road, Tianhe District, Guangzhou, 510520, China.
| |
Collapse
|
3
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Zhu M, Sun J, Wu Y, Ma X, Lei F, Li Q, Jiang C, Li F. Synthesis and anti-proliferative activity of dehydroabietinol derivatives bearing a triazole moiety. RSC Med Chem 2023; 14:680-691. [PMID: 37122546 PMCID: PMC10131649 DOI: 10.1039/d2md00427e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
In search of more efficacious antitumor agents, a series of novel dehydroabietinol derivatives containing a triazole moiety was synthesized, and evaluated for cytotoxicity against four human cancer cell lines. Many exhibited superior cytotoxic profiles compared to the parent molecule, dehydroabietic acid. In particular, compounds 5g, 5i and 5j exhibited promising cytotoxicity with IC50 values ranging from 4.84 to 9.62 μM against all the test cell lines. Cell clone formation and migration tests of compound 5g showed that it not only effectively inhibited the formation of MGC-803 cell colonies but also inhibited the MGC-803 cell migration and invasion. Additionally, the preliminary pharmacological mechanism indicated compound 5g induced apoptosis, arrested the mitotic process at the G0/G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased the intracellular ROS and Ca2+ levels.
Collapse
Affiliation(s)
- Mingjun Zhu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Jinchuan Sun
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fuhou Lei
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University Nanning 530006 China
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Caina Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
5
|
Liu X, Tu H, Peng J. Progress in study on the final executor of necroptosis MLKL and its inhibitors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:242-251. [PMID: 36999471 PMCID: PMC10930346 DOI: 10.11817/j.issn.1672-7347.2023.220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 04/01/2023]
Abstract
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Collapse
Affiliation(s)
- Xuyan Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| | - Hua Tu
- Department of Pharmacy, Fourth Hospital of Changsha, Changsha 410006, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| |
Collapse
|