1
|
Zhang X, Yang L, Feng K, Zhang H, Chen Y, Li W, Wang X, Zhang M, Wu Y, Wei S, Zheng Y, Meng G, Meng W, Chen X, Tang J. Shuxuening injection improves myocardial injury after myocardial infarction by regulating macrophage polarization via the TLR4/NF-κB and PI3K/Akt signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156418. [PMID: 39879705 DOI: 10.1016/j.phymed.2025.156418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Macrophage activation and polarization play pivotal roles in the inflammatory response and myocardial injury associated with myocardial infarction (MI). Modulating macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is a promising therapeutic approach for MI. Shuxuening injection (SXNI) is extensively utilized in clinical settings for MI treatment and has demonstrated therapeutic efficacy. However, the effects of SXNI on macrophage polarization post-MI and its underlying mechanisms remain insufficiently understood. AIM OF THE STUDY This study is aimed to evaluate the effects of SXNI on macrophage polarization following MI and to elucidate its potential mechanisms of action. METHODS A rat model of MI was established by ligation of the left anterior descending coronary artery. The cardioprotective effects of SXNI were assessed through echocardiography, TTC staining, Masson's trichrome staining, HE staining, TUNEL staining, and western blotting (WB). Macrophage polarization was evaluated using ELISA, immunofluorescence staining, and WB. An in vitro model of oxygen-glucose deprivation (OGD) was utilized to simulate MI in macrophages, and qRT-PCR was employed to examine M1/M2 polarization markers. UPLC-Q-TOF/MS was used to identify active components in SXNI. Network pharmacology analysis and molecular docking were utilized to predict the key targets and pathways, which were subsequently validated through WB and immunohistochemistry. RESULTS SXNI improved cardiac function, reduced infarct size, and attenuated myocardial tissue damage and apoptosis in MI rats. Staining analyses indicated a reduction in M1 macrophages (CD86+/CD68+) and an increase in M2 macrophages (CD206+/CD68+) in SXNI-treated animals. In vivo and in vitro experiments demonstrated that SXNI decreased M1 markers and pro-inflammatory cytokines levels while increasing M2 markers and the production of anti-inflammatory and pro-angiogenic cytokines. UPLC-Q-TOF/MS analysis identified 18 active components in SXNI. Network pharmacology analysis and molecular docking implicated the TLR4/NF-κB and PI3K/Akt pathways as central mechanisms, which were further confirmed by WB and immunohistochemistry. SXNI inhibited the expression of TLR4 and phosphorylated NF-κB while enhancing phosphorylated PI3 K and Akt levels. CONCLUSIONS SXNI modulates the TLR4/NF-κB and PI3K/Akt signaling pathways to promote the polarization of macrophages from the M1 to the M2 phenotype, thereby alleviating myocardial inflammation and injury. These findings provide a scientific basis for the clinical application of SXNI in MI management, and establish a scientific foundation for exploring novel therapeutic strategies for cardiovascular diseases based on macrophage polarization.
Collapse
Affiliation(s)
- Xiaoshuai Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Liuqing Yang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Kairui Feng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hui Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yulong Chen
- College of pharmaceutical engineering of traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weixia Li
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaoyan Wang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Mingliang Zhang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Yali Wu
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China
| | - Shiting Wei
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Yajuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Gaoquan Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Weiting Meng
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China
| | - Xiaofei Chen
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China.
| | - Jinfa Tang
- Department of Pharmacy, the First Affiliated Hospital of Henan University of Chinese Medicine, Henan Zhengzhou, 450003, China; Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou 450003, Henan, China; School of Pharmacy, Henan University of Chinese Medicine, Henan Zhengzhou 450046, China.
| |
Collapse
|
2
|
Liu X, Cheng LT, Ye QR, Gao HC, Zhu JW, Zhao K, Liu HM, Wang YJ, Alinejad T, Zhang XH, Chen GZ. Cyy-272, an indazole derivative, effectively mitigates obese cardiomyopathy as a JNK inhibitor. Biomed Pharmacother 2024; 178:117172. [PMID: 39128188 DOI: 10.1016/j.biopha.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Obesity has shown a global epidemic trend. The high-lipid state caused by obesity can maintain the heart in a prolonged low-grade inflammatory state and cause ventricular remodeling, leading to a series of pathologies, such as hypertrophy, fibrosis, and apoptosis, which eventually develop into obese cardiomyopathy. Therefore, prolonged low-grade inflammation plays a crucial role in the progression of obese cardiomyopathy, making inflammation regulation an essential strategy for treating this disease. Cyy-272, an indazole derivative, is an anti-inflammatory compound independently synthesized by our laboratory. Our previous studies revealed that Cyy-272 can exert anti-inflammatory effects by inhibiting the phosphorylation and activation of C-Jun N-terminal kinase (JNK), thereby alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed to evaluate the potential of Cyy-272 to mitigate the occurrence and progression of obese cardiomyopathy through the inhibition of the JNK signaling pathway. Our results indicate that the compound Cyy-272 has encouraging therapeutic effects on obesity-induced cardiac injury. It significantly inhibits inflammation in cardiomyocytes and heart tissues induced by high lipid concentrations, further alleviating the resulting hypertrophy, fibrosis, and apoptosis. Mechanistically, the protective effect of Cyy-272 on obese cardiomyopathy can be attributed to its direct inhibition of JNK protein phosphorylation. In conclusion, we identified a novel compound, Cyy-272, capable of alleviating obese cardiomyopathy and confirmed that its effect is achieved through direct inhibition of JNK.
Collapse
Affiliation(s)
- Xin Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lin-Ting Cheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qian-Ru Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao-Cheng Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jin-Wei Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hua-Min Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun-Jie Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Tahereh Alinejad
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiu-Hua Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Gao-Zhi Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
3
|
Liu Z, Liu G, Wang Y, Zheng C, Guo Y. Association between skeletal muscle and left ventricular mass in patients with hyperthyroidism. Front Endocrinol (Lausanne) 2024; 15:1301529. [PMID: 38356960 PMCID: PMC10864587 DOI: 10.3389/fendo.2024.1301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This study aims to investigate the relationship between skeletal muscle and left ventricular mass (LVM) in patients with hyperthyroidism, providing theoretical and data-based foundations for further research on the interaction between secondary muscle atrophy and cardiac remodeling. Methods A retrospective data collection was conducted, including 136 patients with hyperthyroidism (Study group) and 50 healthy participants (control group). The Study group was further divided into Group A (high LVM) and Group B (low LVM) based on LVM size. Multiple linear regression analysis was performed to examine the correlation between skeletal muscle and LVM, with model evaluation. Based on the results, further nonlinear regression analysis was conducted to explore the detailed relationship between skeletal muscle and LVM. Results Compared to the control group, the Study group exhibited significantly lower LVM, skeletal muscle mass index (SMI), and skeletal muscle mass (SMM) (P<0.05). Within the subgroups, Group A had significantly higher SMI, SMM, and hand grip strength compared to Group B (P<0.05). The results of the multiple linear regression showed a certain correlation between SMI (β=0.60, P=0.042, 95% CI=0.02~1.17) and hand grip strength (β=0.34, P=0.045, 95% CI=0.01~0.67) with LVM. However, the residuals of the multiple regression did not follow a normal distribution (K-S=2.50, P<0.01). Further results from a generalized linear model and structural equation modeling regression also demonstrated a correlation between SMI (β=0.60, P=0.040, 95% CI=0.03~1.17) (β=0.60, P=0.042, 95% CI=0.02~1.17) and hand grip strength (β=0.34, P=0.043, 95% CI=0.01~0.67) (β=0.34, P=0.045, 95% CI=0.01~0.67) with LVM. Conclusion Patients with hyperthyroidism may exhibit simultaneous decreases in LVM, SMM, and SMI. The LVM in patients is correlated with SMM and hand grip strength, highlighting the need for further exploration of the causal relationship and underlying mechanisms. These findings provide a basis for the prevention and treatment of secondary sarcopenia and cardiac pathology in patients with hyperthyroidism.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| | - Guang Liu
- Shandong Provincial Sports Center, Shandong Administration of Sports, Jinan, Shandong, China
| | - Yanzhi Wang
- Academic Affairs Office, Binzhou Medical University, Yantai, Shandong, China
| | - Chongwen Zheng
- Department of Neurology, The 2nd Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yunliang Guo
- Institute of Integrative Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Li J, He X, Liu F, Zheng X, Jiang J. Tumor Necrosis Factor-α-Induced Protein-8-like 2 Transfected Adipose-Derived Stem Cells Regulated the Dysfunction of Monocrotaline Pyrrole-Induced Pulmonary Arterial Smooth Muscle Cells and Pulmonary Arterial Endothelial Cells. J Cardiovasc Pharmacol 2024; 83:73-85. [PMID: 38180455 DOI: 10.1097/fjc.0000000000001505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/12/2023] [Indexed: 01/06/2024]
Abstract
ABSTRACT Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) activation. For decades, the therapies for PAH based on stem cells have been shown to be effective. Meanwhile, tumor necrosis factor-α-induced protein-8-like 2 (TIPE2) promote the viability of human amniotic mesenchymal stem cells. Therefore, we aimed to explore the role of TIPE2 in adipose-derived stem cells (ADSCs) and the function of TIPE2-transfected ADSCs in the regulation of PAH. We first explored the role and underlying molecular mechanism of TIPE2 in viability and migration of ADSCs. Moreover, the ADSCs transfected with TIPE2 were cocultured with monocrotaline pyrrole (MCTP)-stimulated PASMCs or PAECs. The effects and mechanisms of TIPE2-transfected ADSCs on MCTP-induced PASMCs and PAECs were further investigated. The results showed that TIPE2 overexpression promoted viability and migration of ADSCs by activating the TLR4-ERK1/2 pathway. In addition, TIPE2-transfected ADSCs inhibited the abnormal proliferation and the impaired apoptosis of PASMCs via NF-κB signaling and promoted the conversion of PASMCs from synthetic to contractile. Meanwhile, TIPE2-transfected ADSCs reduced the apoptosis, endothelial-to-mesenchymal transition, and migration of PAECs via PI3K/AKT signaling after MCTP treatment. MCTP-induced oxidative stress and inflammation of PAECs were significantly decreased by TIPE2-transfected ADSCs. In rat model, TIPE2-ADSCs administration further decreased the monocrotaline-induced increase in the right ventricular systolic pressure and ratio of right ventricle weight/left ventricle and septa weight (L + S) and right ventricle weight/body weight compared with the ADSCs group. In conclusion, TIPE2-transfected ADSCs dramatically attenuated the PAH via inhibiting the dysfunction of PASMCs and PAECs.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Xin He
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Feng Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; and
| | - Jing Jiang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Liu Y, Guan X, Shao Y, Zhou J, Huang Y. The Molecular Mechanism and Therapeutic Strategy of Cardiorenal Syndrome Type 3. Rev Cardiovasc Med 2023; 24:52. [PMID: 39077418 PMCID: PMC11273121 DOI: 10.31083/j.rcm2402052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 07/31/2024] Open
Abstract
Cardiorenal syndrome type 3 (CRS3) is defined as acute kidney injury (AKI)-induced acute cardiac dysfunction, characterized by high morbidity and mortality. CRS3 often occurs in elderly patients with AKI who need intensive care. Approximately 70% of AKI patients develop into CRS3. CRS3 may also progress towards chronic kidney disease (CKD) and chronic cardiovascular disease (CVD). However, there is currently no effective treatment. Although the major intermediate factors that can mediate cardiac dysfunction remain elusive, recent studies have summarized the AKI biomarkers, identified direct mechanisms, including mitochondrial dysfunction, inflammation, oxidative stress, apoptosis and activation of the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS), inflammasome, as well as indirect mechanisms such as fluid overload, electrolyte imbalances, acidemia and uremic toxins, which are involved in the pathophysiological changes of CRS3. This study reviews the main pathological characteristics, underlying molecular mechanisms, and potential therapeutic strategies of CRS3. Mitochondrial dysfunction and inflammatory factors have been identified as the key initiators and abnormal links between the impaired heart and kidney, which contribute to the formation of a vicious circle, ultimately accelerating the progression of CRS3. Therefore, targeting mitochondrial dysfunction, antioxidants, Klotho, melatonin, gene therapy, stem cells, exosomes, nanodrugs, intestinal microbiota and Traditional Chinese Medicine may serve as promising therapeutic approaches against CRS3.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Xu Guan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| | - Yuming Shao
- Medical Division, Xinqiao Hospital, Army Medical University, 400037 Chongqing, China
| | - Jie Zhou
- Department of Oncology, Southwest Cancer Center, Southwest Hospital, Army Medical University, 400038 Chongqing, China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), 400037 Chongqing, China
| |
Collapse
|