1
|
Aydın E, Mungan Durankaya S, Yilmaz O, Kirkim G, Aktaş S, Neşelioğlu S, Erel Ö, Olgun Y, Dalgıç A. Thiol-Disulfide Homeostasis in Noise-Induced Hearing Loss in Rats. J Int Adv Otol 2024; 20:466-471. [PMID: 39659198 PMCID: PMC11639554 DOI: 10.5152/iao.2024.241555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background This study was designed to assess if thiol-disulfide homeostasis could be used as diagnostic biomarker in noise-induced hearing loss (NIHL) in a laboratory animal model. Methods The study was carried out with a total of 28 female albino rats in 4 groups: group 1 (control group) included rats that were not exposed to noise or any study treatment; in group 2, following noise exposure, rats received 2 mg of dexamethasone per kilogram of body weight via the intramuscular route for 5 days; in Group 3, rats were exposed to noise and received a saline solution for 5 days, in a volume (0.15 cc) matched to that of dexamethasone administered in group 2; and in group 4, rats were exposed to noise, and blood samples were collected during the early phase to assess thiol-disulfide homeostasis without administering any treatment. Rats in groups 2, 3, and 4 were exposed to 120 dB noise in the 4 kHz octave band for 4 hours. The auditory brainstem response (ABR) test was performed in all groups on day 1 after noise exposure and was repeated in groups 1, 2, and 3 on day 5. Auditory brainstem response thresholds were recorded at 8, 12, 16, 20, and 32 kHz frequencies. Groups 1, 2, and 3 rats were sacrificed on day 5, and group 4 rats were sacrificed by exsanguination on day 1 after noise exposure. Venous blood samples collected from the caudal vena cava were centrifuged and sent to the corresponding laboratory for thiol-disulfide homeostasis studies. After sacrificing the rats, the right and left temporal bones of each rat were removed and stained with hematoxylin eosin for histological studies to explore any pyknotic changes in spiral ganglion cells. Results Intergroup comparisons by frequency on day 5 of noise exposure showed statistically significantly lower responses in ABR measurements at 8 kHz, 12 kHz, and 16 kHz in group 2 compared to group 3 (P = .003, P=.006, and P=.002). Improvements were observed with dexamethasone administered for therapeutic purposes, particularly if the hearing loss was induced by low-frequency noise. In the assessment of the parameters of thiol-disulfide homeostasis, disulfide/native thiol and disulfide/total thiol ratios and ischemia-modified albumin (IMA) levels were higher in group 4 than in other groups, although only the differences between group 1 and group 4 reached statistical significance. Conclusion According to this study, thiol-disulfide homeostasis and IMA can be shown as diagnostic biomarkers in NIHL, especially in the early period. The results from our study suggest that these markers may be used as adjunctive diagnostic tools in NIHL, in addition to audiological studies. However, this issue can be clarified with further clinical studies.
Collapse
Affiliation(s)
- Enes Aydın
- Clinic of Ear-Nose and Throat, İstanbul Silivri State Hospital, İstanbul, Türkiye
| | - Serpil Mungan Durankaya
- Department of Ear-Nose and Throat, Audiology Section, Dokuz Eylül University Institute of Health Sciences, İzmir, Türkiye
| | - Osman Yilmaz
- Department of Laboratory Animals, Dokuz Eylül University Institute of Health Sciences, İzmir, Türkiye
| | - Günay Kirkim
- Department of Ear-Nose and Throat, Audiology Section, Dokuz Eylül University Institute of Health Sciences, İzmir, Türkiye
| | - Safiye Aktaş
- Department of Oncology, Dokuz Eylül University Institute of Health Sciences, İzmir, Türkiye
| | - Salim Neşelioğlu
- Department of Medical Biochemistry, Yıldırım Beyazıt University School of Medicine, Ankara, Türkiye
| | - Özcan Erel
- Department of Medical Biochemistry, Yıldırım Beyazıt University School of Medicine, Ankara, Türkiye
| | - Yüksel Olgun
- Department of Ear-Nose and Throat, Dokuz Eylül University School of Medicine, İzmir, Türkiye
| | - Abdullah Dalgıç
- Ear-Nose and Throat/Head and Neck Surgery Clinics, İzmir Bozyaka Teaching Hospital, Health Sciences University, İzmir, Türkiye
| |
Collapse
|
2
|
Yang X, Yang X, Li B, Zhang J, Yan Z. Combined non-targeted and targeted metabolomics reveals the mechanism of delaying aging of Ginseng fibrous root. Front Pharmacol 2024; 15:1368776. [PMID: 39114359 PMCID: PMC11303238 DOI: 10.3389/fphar.2024.1368776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background: The fibrous root of ginseng (GFR) is the dried thin branch root or whisker root of Ginseng (Panax ginseng C. A. Mey). It is known for its properties such as tonifying qi, producing body fluid, and quenching thirst. Clinically, it is used to treat conditions such as cough, hemoptysis, thirst, stomach deficiency, and vomiting. While GFR and Ginseng share similar metabolites, they differ in their metabolites ratios and efficacy. Furthermore, the specific role of GFR in protecting the body remains unclear. Methods: We employed ultra-high performance liquid chromatography-triple quadrupole mass spectrometry to examine alterations in brain neurotransmitters and elucidate the impact of GFR on the central nervous system. Additionally, we analyzed the serum and brain metabolic profiles of rats using ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry to discern the effect and underlying mechanism of GFR in delaying aging in naturally aged rats. Results: The findings of the serum biochemical indicators indicate that the intervention of GFR can enhance cardiovascular, oxidative stress, and energy metabolism related indicators in naturally aging rats. Research on brain neurotransmitters suggests that GFR can augment physiological functions such as learning and memory, while also inhibiting central nervous system excitation to a certain degree by maintaining the equilibrium of central neurotransmitters in aged individuals. Twenty-four abnormal metabolites in serum and seventeen abnormal metabolites in brain could be used as potential biomarkers and were involved in multiple metabolic pathways. Among them, in the brain metabolic pathways, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, histidine metabolism, and tyrosine metabolism were closely related to central neurotransmitters. Butanoate metabolism improves energy supply for life activities in the aging body. Cysteine and methionine metabolism contributes to the production of glutathione and taurine and played an antioxidant role. In serum, the regulation of glycerophospholipid metabolism pathway and proline metabolism demonstrated the antioxidant capacity of GFR decoction. Conclution: In summary, GFR plays a role in delaying aging by regulating central neurotransmitters, cardiovascular function, oxidative stress, energy metabolism, and other aspects of the aging body, which lays a foundation for the application of GFR.
Collapse
Affiliation(s)
- Xiang Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shijiazhuang Food and Drug Inspection Center, Shijiazhuang, China
| | - Xiang Yang
- Beijing Apex Pharmaceutical R&D Co., Ltd., Beijing, China
| | - Bo Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Jianyun Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Khorrami M, Pastras C, Haynes PA, Mirzaei M, Asadnia M. The Current State of Proteomics and Metabolomics for Inner Ear Health and Disease. Proteomes 2024; 12:17. [PMID: 38921823 PMCID: PMC11207525 DOI: 10.3390/proteomes12020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Characterising inner ear disorders represents a significant challenge due to a lack of reliable experimental procedures and identified biomarkers. It is also difficult to access the complex microenvironments of the inner ear and investigate specific pathological indicators through conventional techniques. Omics technologies have the potential to play a vital role in revolutionising the diagnosis of ear disorders by providing a comprehensive understanding of biological systems at various molecular levels. These approaches reveal valuable information about biomolecular signatures within the cochlear tissue or fluids such as the perilymphatic and endolymphatic fluid. Proteomics identifies changes in protein abundance, while metabolomics explores metabolic products and pathways, aiding the characterisation and early diagnosis of diseases. Although there are different methods for identifying and quantifying biomolecules, mass spectrometry, as part of proteomics and metabolomics analysis, could be utilised as an effective instrument for understanding different inner ear disorders. This study aims to review the literature on the application of proteomic and metabolomic approaches by specifically focusing on Meniere's disease, ototoxicity, noise-induced hearing loss, and vestibular schwannoma. Determining potential protein and metabolite biomarkers may be helpful for the diagnosis and treatment of inner ear problems.
Collapse
Affiliation(s)
- Motahare Khorrami
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Christopher Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, Sydney 2109, NSW, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney 2109, NSW, Australia;
| | - Mohsen Asadnia
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney 2109, NSW, Australia; (M.K.); (C.P.)
| |
Collapse
|
4
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
5
|
Martini A, Cozza A, Di Pasquale Fiasca VM. The Inheritance of Hearing Loss and Deafness: A Historical Perspective. Audiol Res 2024; 14:116-128. [PMID: 38391767 PMCID: PMC10886121 DOI: 10.3390/audiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
If the term "genetics" is a relatively recent proposition, introduced in 1905 by English biologist William Bateson, who rediscovered and spread in the scientific community Mendel's principles of inheritance, since the dawn of human civilization the influence of heredity has been recognized, especially in agricultural crops and animal breeding. And, later, in familial dynasties. In this concise review, we outline the evolution of the idea of hereditary hearing loss, up to the current knowledge of molecular genetics and epigenetics.
Collapse
Affiliation(s)
- Alessandro Martini
- Padova University Research Center "International Auditory Processing Project in Venice (I-APPROVE)", Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Andrea Cozza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | | |
Collapse
|
6
|
Zhou Y, Fang C, Yuan L, Guo M, Xu X, Shao A, Zhang A, Zhou D. Redox homeostasis dysregulation in noise-induced hearing loss: oxidative stress and antioxidant treatment. J Otolaryngol Head Neck Surg 2023; 52:78. [PMID: 38082455 PMCID: PMC10714662 DOI: 10.1186/s40463-023-00686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Noise exposure is an important cause of acquired hearing loss. Studies have found that noise exposure causes dysregulated redox homeostasis in cochlear tissue, which has been recognized as a signature feature of hearing loss. Oxidative stress plays a pivotal role in many diseases via very complex and diverse mechanisms and targets. Reactive oxygen species are products of oxidative stress that exert toxic effects on a variety of physiological activities and are considered significant in noise-induced hearing loss (NIHL). Endogenous cellular antioxidants can directly or indirectly counteract oxidative stress and regulate intracellular redox homeostasis, and exogenous antioxidants can complement and enhance this effect. Therefore, antioxidant therapy is considered a promising direction for NIHL treatment. However, drug experiments have been limited to animal models of NIHL, and these experiments and related observations are difficult to translate in humans; therefore, the mechanisms and true effects of these drugs need to be further analyzed. This review outlines the effects of oxidative stress in NIHL and discusses the main mechanisms and strategies of antioxidant treatment for NIHL.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mengchen Guo
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Suzuki J, Hemmi T, Maekawa M, Watanabe M, Inada H, Ikushima H, Oishi T, Ikeda R, Honkura Y, Kagawa Y, Kawase T, Mano N, Owada Y, Osumi N, Katori Y. Fatty acid binding protein type 7 deficiency preserves auditory function in noise-exposed mice. Sci Rep 2023; 13:21494. [PMID: 38057582 PMCID: PMC10700610 DOI: 10.1038/s41598-023-48702-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Fatty acid-binding protein 7 (FABP7) is vital for uptake and trafficking of fatty acids in the nervous system. To investigate the involvement of FABP7 in noise-induced hearing loss (NIHL) pathogenesis, we used Fabp7 knockout (KO) mice generated via CRISPR/Cas9 in the C57BL/6 background. Initial auditory brainstem response (ABR) measurements were conducted at 9 weeks, followed by noise exposure at 10 weeks. Subsequent ABRs were performed 24 h later, with final measurements at 12 weeks. Inner ears were harvested 24 h after noise exposure for RNA sequencing and metabolic analyses. We found no significant differences in initial ABR measurements, but Fabp7 KO mice showed significantly lower thresholds in the final ABR measurements. Hair cell survival was also enhanced in Fabp7 KO mice. RNA sequencing revealed that genes associated with the electron transport chain were upregulated or less impaired in Fabp7 KO mice. Metabolomic analysis revealed various alterations, including decreased glutamate and aspartate in Fabp7 KO mice. In conclusion, FABP7 deficiency mitigates cochlear damage following noise exposure. This protective effect was supported by the changes in gene expression of the electron transport chain, and in several metabolites, including excitotoxic neurotransmitters. Our study highlights the potential therapeutic significance of targeting FABP7 in NIHL.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Tomotaka Hemmi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Ikushima
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuya Oishi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology, Head and Neck Surgery, Iwate Medical University School of Medicine, 19-1 Odori, Yahaba, Shiwa, 020-8505, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
8
|
Malesci R, Lombardi M, Abenante V, Fratestefano F, Del Vecchio V, Fetoni AR, Troisi J. A Systematic Review on Metabolomics Analysis in Hearing Impairment: Is It a Possible Tool in Understanding Auditory Pathologies? Int J Mol Sci 2023; 24:15188. [PMID: 37894867 PMCID: PMC10607298 DOI: 10.3390/ijms242015188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
With more than 466 million people affected, hearing loss represents the most common sensory pathology worldwide. Despite its widespread occurrence, much remains to be explored, particularly concerning the intricate pathogenic mechanisms underlying its diverse phenotypes. In this context, metabolomics emerges as a promising approach. Indeed, lying downstream from molecular biology's central dogma, the metabolome reflects both genetic traits and environmental influences. Furthermore, its dynamic nature facilitates well-defined changes during disease states, making metabolomic analysis a unique lens into the mechanisms underpinning various hearing impairment forms. Hence, these investigations may pave the way for improved diagnostic strategies, personalized interventions and targeted treatments, ultimately enhancing the clinical management of affected individuals. In this comprehensive review, we discuss findings from 20 original articles, including human and animal studies. Existing literature highlights specific metabolic changes associated with hearing loss and ototoxicity of certain compounds. Nevertheless, numerous critical issues have emerged from the study of the current state of the art, with the lack of standardization of methods, significant heterogeneity in the studies and often small sample sizes being the main limiting factors for the reliability of these findings. Therefore, these results should serve as a stepping stone for future research aimed at addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Rita Malesci
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Martina Lombardi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
| | - Vera Abenante
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Federica Fratestefano
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
| | - Valeria Del Vecchio
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Sciences and Dentistry (Audiology and Vestibology Service), University of Naples Federico II, 80138 Napoli, Italy; (V.D.V.); (A.R.F.)
| | - Jacopo Troisi
- Theoreo srl, Spin off Company of the University of Salerno, Via Degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (V.A.); (F.F.); (J.T.)
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
- European Institute of Metabolomics (EIM) Foundation ETS, G. Puccini, 2, 84081 Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
9
|
Lun Y, Chen J, Lu P, Yuan H, Ma P, Wang W, Liang R, Li S, Gao W, Ding X, Wang Z, Guo J, Lu L. Predictive value of serum proteomic biomarkers for noise-induced hearing loss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96827-96839. [PMID: 37582891 DOI: 10.1007/s11356-023-29294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Early detection of noise-induced hearing loss (NIHL) in patients with long-term noise exposure is vital for improving public health and reducing social burden. However, at present, the diagnosis of NIHL mainly depends on audiometric testing, and the primary test is pure-tone audiometry. Moreover, testing requires professional operators and complex equipment; thus, NIHL is often diagnosed at a later disease stage. Using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic approach, we identified 9 differentially expressed proteins (DEPs), namely, 6 upregulated serum proteins and 3 downregulated serum proteins, in samples from 50 ground crew personnel working at an air force station. Then, according to the results, we predicted that caldesmon (CALD1), myocilin (MYOC), zyxin (ZYX), creatine kinase M-type (CKM), insulin-like growth factor-binding protein 2 (IGFBP2), complement factor H-related protein 4 (CFHR4), prenylcysteine oxidase 1 (PCYOX1), heat shock cognate 71 kDa protein (HSPA8), and immunoglobulin lambda variable 3-21 (IGLV3-21) were associated with NIHL. We selected these DEPs as variables to perform logistic regression. Finally, a logistic regression model was constructed based on IGFBP2, ZYX, CKM, and CFHR4. The area under the curve was 0.894 (95% CI = 0.812 to 0.977). These findings suggested that IGFBP2, ZYX, CKM, and CFHR4 in serum are differentially expressed in NIHL patients and have the potential to be biomarkers for predicting the risk for NIHL. Further experiments in mice showed that ZYX and IGFBP2 in the cochlear were increased after noise exposure. ZYX and IGFBP2 may be involved in the occurrence and development of NIHL.
Collapse
Affiliation(s)
- Yuqiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiawei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiheng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pengwei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Weilong Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuerui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jianing Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lianjun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Wang D, Zhu J, Li N, Lu H, Gao Y, Zhuang L, Chen Z, Mao W. GC-MS-based untargeted metabolic profiling of malignant mesothelioma plasma. PeerJ 2023; 11:e15302. [PMID: 37220527 PMCID: PMC10200095 DOI: 10.7717/peerj.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/05/2023] [Indexed: 05/25/2023] Open
Abstract
Background Malignant mesothelioma (MM) is a cancer caused mainly by asbestos exposure, and is aggressive and incurable. This study aimed to identify differential metabolites and metabolic pathways involved in the pathogenesis and diagnosis of malignant mesothelioma. Methods By using gas chromatography-mass spectrometry (GC-MS), this study examined the plasma metabolic profile of human malignant mesothelioma. We performed univariate and multivariate analyses and pathway analyses to identify differential metabolites, enriched metabolism pathways, and potential metabolic targets. The area under the receiver-operating curve (AUC) criterion was used to identify possible plasma biomarkers. Results Using samples from MM (n = 19) and healthy control (n = 22) participants, 20 metabolites were annotated. Seven metabolic pathways were disrupted, involving alanine, aspartate, and glutamate metabolism; glyoxylate and dicarboxylate metabolism; arginine and proline metabolism; butanoate and histidine metabolism; beta-alanine metabolism; and pentose phosphate metabolic pathway. The AUC was used to identify potential plasma biomarkers. Using a threshold of AUC = 0.9, five metabolites were identified, including xanthurenic acid, (s)-3,4-hydroxybutyric acid, D-arabinose, gluconic acid, and beta-d-glucopyranuronic acid. Conclusions To the best of our knowledge, this is the first report of a plasma metabolomics analysis using GC-MS analyses of Asian MM patients. Our identification of these metabolic abnormalities is critical for identifying plasma biomarkers in patients with MM. However, additional research using a larger population is needed to validate our findings.
Collapse
Affiliation(s)
- Ding Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Jing Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Na Li
- Shaoxing No. 2 Hospital Medical Community General Hospital, Shaoxing, China
| | - Hongyang Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Yun Gao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Lei Zhuang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| | - Weimin Mao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China
| |
Collapse
|