1
|
Wen X, Dong P, Liu J, Wang SJ, Li J. Role of Immune Inflammation in Recurrent Spontaneous Abortions. J Inflamm Res 2024; 17:9407-9422. [PMID: 39600677 PMCID: PMC11590633 DOI: 10.2147/jir.s488638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study aimed to investigate the role of immune inflammation in recurrent spontaneous abortions (RSA). Methods In this study, decidua tissues from 12 patients were collected. These included six individuals with RSA in the RSA group and six in the control group. The differences in gene and metabolite expression in the decidua of the placenta between normal pregnancies and patients with RSA were compared using transcriptomic and metabolomic analyses. The differentially expressed genes and metabolites were further analyzed through functional enrichment analysis using high-throughput sequencing technology. Results There was a significant upregulation of genes associated with immunity and inflammation in the RSA group compared to the control group. The TNF signaling pathway was upregulated in the RSA group. Inflammatory mediators were expressed at higher levels in the RSA group, and arachidonic acid metabolism was the most significant differential metabolite set. The regulation of inflammatory mediators of transient receptor potential (TRP) channels were enriched in RSA cases. The integrated analysis of the data further suggests that the immune-inflammatory response might be an important factor in RSA. The expression levels of genes related to inflammation and hypoxia in tissues from patients with RSA were verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and this revealed that the expression of MARK10 and TNFAIP3 genes was significantly upregulated in samples from RSA patients compared to normal tissues. Conclusion The findings suggest a strong association between immune-related inflammation and RSA. Addressing metabolic and inflammatory aspects in patients with RSA may potentially help enhance pregnancy outcomes.
Collapse
Affiliation(s)
- Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Peng Dong
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jia Liu
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Shi-Jun Wang
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jian Li
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Department of Family Planning, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
2
|
Deng L, Jin Y, Zheng X, Yang Y, Feng Y, Zhou H, Zeng Q. Pharmacological and toxicological characteristics of baicalin in preventing spontaneous abortion and recurrent pregnancy loss: A multi-level critical review. Heliyon 2024; 10:e38633. [PMID: 39640688 PMCID: PMC11619987 DOI: 10.1016/j.heliyon.2024.e38633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Relevance Spontaneous abortion (SAB) and recurrent pregnancy loss (RPL) occur alone or concurrently with increasing incidences recently. Scutellaria baicalensis Georgi (SBG) has been used to prevent pregnancy loss for thousands of years, which is recognized as a "pregnancy-stabilizing herb" in ancient China. Baicalin (BA) and its metabolite baicalein (BE) are the main bioactive flavonoids in the root of SBG. Methods In this study, we focused particularly on the metabolism, toxicology, and pharmacological effects of BA at the maternal-fetal interface based on the biological process prediction by network pharmacology. Focused on the systematic review of BA's regulatory mechanisms of immune homeostasis, cell proliferation and invasion, programmed cell death, inflammatory microenvironment, angiogenesis, oxidative stress and vascular remodeling at the maternal-fetal interface, it was found that BA exerts its biological effects to treat SAB and RPL through multiple perspectives and targets. We also critically elucidated the limitations of using BA from a clinical perspective. Results We explored the bioavailability, targeting and efficacy of BA from a new perspective (optimization of the BA delivery system, organoid studies based on BA, potential effects of BA on uterine flora and bioactive components). Finally, we propose a multimodal stereo sequencing study of biologically active components based on pathological dynamics incorporating single-cell RNA sequencing, spatially resolved transcriptomics, and single-cell multimodal omics to delve deeper into the fetal-preserving mechanism of BA and to promote the application of BA in clinical practice.
Collapse
Affiliation(s)
- Linwen Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yue Jin
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Xiaoyan Zheng
- College of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yi Yang
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Yong Feng
- Combined Traditional Chinese Medicine and Western Medicine Clinics, Mianyang Central Hospital, Sichuan, China
| | - Hang Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Qian Zeng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
| |
Collapse
|
3
|
Zheng W, Lei M, Yao Y, Zhan J, Zhang Y, Zhou Q. Mechanisms underlying the therapeutic effects of Semen cuscutae in treating recurrent spontaneous abortion based on network pharmacology and molecular docking. Front Mol Biosci 2024; 11:1282100. [PMID: 38872917 PMCID: PMC11170108 DOI: 10.3389/fmolb.2024.1282100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024] Open
Abstract
Background: This paper aims to analyse the active components of Semen cuscutae (SC) by network pharmacology and screen the most stable compounds with tumour necrosis factor-alpha (TNF-α) by molecular docking to explore the mechanisms of SC treatment of recurrent spontaneous abortion (RSA) and provide a theoretical basis for drug development. Methods: The active compounds of SC and the potential inflammatory targets of RSA were obtained from the Traditional Chinese Medicine Systems Pharmacology database and GeneCards, respectively. The RSA-SC target gene interaction network was obtained and visualized using the STRING database and Cytoscape software. GO and KEGG pathway enrichment analyses were obtained from DAVID to further explore the RSA mechanism and therapeutic effects of SC. Interactions between TNF-α and drugs were analysed by molecular docking. Treatment of human trophoblast cells with sesamin and TNF-α was carried out to detect their proliferative and apoptotic abilities, and WB assay was carried out to detect EGFR, PTGS2, and CASP3 protein expression. Results: Ten compounds and 128 target genes were screened from SC, of which 79 overlapped with RSA target inflammatory genes, which were considered potential therapeutic targets. Network pharmacological analysis showed that sesamin, matrine, matrol, and other SC compounds had a good correlation with the inflammatory target genes of RSA. Related genes included PGR, PTGS1, PTGS2, TGFB1, and CHRNA7. Several signalling pathways are involved in the pathogenesis of RSA, such as the TNF-α signalling pathway, HIF-1 signalling pathway, oestrogen signalling pathway, proteoglycans in cancer cells, and FoxO signalling pathway. Molecular docking results suggested that sesamin was the most suitable natural tumour necrosis factor inhibitor (TNFi). Sesamin can promote proliferation and inhibit apoptosis in human trophoblasts by downregulating EGFR and CASP3 expression and upregulating PTGS2 expression. Conclusion: Our findings play an important role and basis for further research into the molecular mechanism of SC treatment of RSA and drug development of TNFi.
Collapse
Affiliation(s)
- Wenfei Zheng
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichan, China
| | | | | | | | | | | |
Collapse
|
4
|
Wang L, Huang S, Liang X, Zhou J, Han Y, He J, Xu D. Immuno-modulatory role of baicalin in atherosclerosis prevention and treatment: current scenario and future directions. Front Immunol 2024; 15:1377470. [PMID: 38698839 PMCID: PMC11063305 DOI: 10.3389/fimmu.2024.1377470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024] Open
Abstract
Atherosclerosis (AS) is recognized as a chronic inflammatory condition characterized by the accumulation of lipids and inflammatory cells within the damaged walls of arterial vessels. It is a significant independent risk factor for ischemic cardiovascular disease, ischemic stroke, and peripheral arterial disease. Despite the availability of current treatments such as statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and lifestyle modifications for prevention, AS remains a leading cause of morbidity and economic burden worldwide. Thus, there is a pressing need for the development of new supplementary and alternative therapies or medications. Huangqin (Scutellaria baicalensis Georgi. [SBG]), a traditional Chinese medicine, exerts a significant immunomodulatory effect in AS prevention and treatment, with baicalin being identified as one of the primary active ingredients of traditional Chinese medicine. Baicalin offers a broad spectrum of pharmacological activities, including the regulation of immune balance, antioxidant and anti-inflammatory effects, and improvement of lipid metabolism dysregulation. Consequently, it exerts beneficial effects in both AS onset and progression. This review provides an overview of the immunomodulatory properties and mechanisms by which baicalin aids in AS prevention and treatment, highlighting its potential as a clinical translational therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiangshan He
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Danping Xu
- Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
5
|
Huang JP, Lin CH, Tseng CW, Chien MH, Lee HC, Yang KD. First-trimester urinary extracellular vesicles as predictors of preterm birth: an insight into immune programming. Front Cell Dev Biol 2024; 11:1330049. [PMID: 38357529 PMCID: PMC10864598 DOI: 10.3389/fcell.2023.1330049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024] Open
Abstract
Background: The programming of innate and adaptive immunity plays a pivotal role in determining the course of pregnancy, leading to either normal term birth (TB) or preterm birth (PB) through the modulation of macrophage (M1/M2) differentiation. Extracellular vesicles (EVs) in maternal blood, harboring a repertoire of physiological and pathological messengers, are integral players in pregnancy outcomes. It is unknown whether urinary EVs (UEVs) could serve as a non-invasive mechanistic biomarker for predicting PB. Methods: This study investigated first-trimester UEVs carrying M1 messengers with altered immune programming, aiming to discern their correlation to subsequent PB. A birth cohort comprising 501 pregnant women, with 40 women experiencing PB matched to 40 women experiencing TB on the same day, was examined. First-trimester UEVs were isolated for the quantification of immune mediators. Additionally, we evaluated the UEV modulation of "trained immunity" on macrophage and lymphocyte differentiations, including mRNA expression profiles, and chromatin activation modification at histone 3 lysine 4 trimethylation (H3K4me3). Results: We found a significant elevation (p < 0.05) in the particles of UEVs bearing characteristic exosome markers (CD9/CD63/CD81/syntenin) during the first trimester of pregnancy compared to non-pregnant samples. Furthermore, UEVs from PB demonstrated significantly heightened levels of MCP-1 (p = 0.003), IL-6 (p = 0.041), IL-17A (p = 0.007), IP-10 (p = 0.036), TNFα (p = 0.004), IL-12 (p = 0.045), and IFNγ (p = 0.030) relative to those from TB, indicative of altered M1 and Th17 differentiation. Notably, MCP-1 (>174 pg/mL) exhibited a sensitivity of 71.9% and specificity of 64.6%, and MCP-1 (>174 pg/mL) and IFNγ (>8.7 pg/mL) provided a higher sensitivity (84.6%) of predicting PB and moderate specificity of 66.7%. Subsequent investigations showed that UEVs from TB exerted a significant suppression of M1 differentiation (iNOS expression) and Th17 differentiation (RORrT expression) compared to those of PB. Conversely, UEVs derived from PB induced a significantly higher expression of chromatin modification at H3K4me3 with higher production of IL-8 and TNFα cytokines (p < 0.001). Implications: This pioneering study provides critical evidence for the early detection of altered M1 and Th17 responses within UEVs as a predictor of PB and early modulation of altered M1 and Th17 polarization associated with better T-cell regulatory differentiation as a potential prevention of subsequent PB.
Collapse
Affiliation(s)
- Jian-Pei Huang
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
| | - Chia-Hsueh Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Wen Tseng
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ming-Hui Chien
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | | | - Kuender D. Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Mackay Children’s Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Li L, Zhang Z, Li H, Zhou M, Li F, Chu C, Zhang Y, Zhu X, Ju H, Li X. Research progress on the STAT signaling pathway in pregnancy and pregnancy-associated disorders. Front Immunol 2024; 14:1331964. [PMID: 38235138 PMCID: PMC10792037 DOI: 10.3389/fimmu.2023.1331964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins, pivotal regulators of signaling cascades, undergo activation in response to the stimulation of cytokines and growth factors, and participate in biological processes, including inflammation, immune responses, cell proliferation, and differentiation. During the process of pregnancy, STAT signaling is involved in regulating embryonic implantation, endometrial decidualization, and establishing and maintaining maternal-fetal immune tolerance. Increasing evidence suggests that aberrant STAT signaling contributes to the occurrence and development of pregnancy disorders, including repeated implantation failure (RIF), preeclampsia (PE), recurrent spontaneous abortion (RSA), preterm birth (PTB) and gestational diabetes mellitus (GDM). Elucidating the molecular mechanisms of the STAT signaling pathway holds promise for further understanding the establishment and maintenance of normal pregnancy, and thereby providing potent targets and strategic avenues for the prevention and management of ailments associated with pregnancy. In this review, we summarized the roles of the STAT signaling pathway and its related regulatory function in embryonic implantation, endometrial decidualization, and maternal-fetal immune tolerance. In conclusion, in-depth research on the mechanism of the STAT signaling pathway not only enhances our understanding of normal pregnancy processes but also offers STAT-based therapeutic approaches to protect women from the burden of pregnancy-related disorders.
Collapse
Affiliation(s)
- Lihua Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haoyang Li
- International Business School, Tianjin Foreign Studies University, Tianjin, China
| | - Miaomiao Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoxiao Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongmei Ju
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
8
|
Stope MB, Mustea A, Sänger N, Einenkel R. Immune Cell Functionality during Decidualization and Potential Clinical Application. Life (Basel) 2023; 13:life13051097. [PMID: 37240742 DOI: 10.3390/life13051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent 40-50% of the decidua at the time of implantation. Their importance for the implantation, maintenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions, were discussed. There is a rising number of commercially available diagnostic tools. However, the intervention options are still limited and/or poorly studied. In order for us to make big steps towards the proper use of reproductive immunology findings, we need to understand the mechanisms and especially support translational research.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-Current Trends in Detection Methods and Health-Promoting Properties. Pharmaceuticals (Basel) 2023; 16:ph16040570. [PMID: 37111327 PMCID: PMC10146343 DOI: 10.3390/ph16040570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Baicalin (7-D-glucuronic acid-5,6-dihydroxyflavone) belongs to natural flavonoids extracted from the roots of Scutellaria baicalensis, the plant used in traditional Chinese medicine. It has been proven that baicalin has various pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and anti-apoptotic ones. However, it is essential not only to determine the medical usefulness of baicalin, but also to find and develop the most effective methods for its extraction and detection. Therefore, the aim of this review was to summarize the current methods of detection and identification of baicalin and to present the medical applications of baicalin and the underlying mechanisms of its action. Based on the review of the latest literature, it can be concluded that liquid chromatography alone or together with mass spectrometry is the most commonly used method for the determination of baicalin. Recently, also new electrochemical methods have been established, e.g., biosensors with fluorescence, which have better detection limits, sensitivity, and selectivity.
Collapse
Affiliation(s)
- Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland
| | - Marcelina Chmiel
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | |
Collapse
|
10
|
Lodge-Tulloch NA, Toews AJ, Atallah A, Cotechini T, Girard S, Graham CH. Cross-Generational Impact of Innate Immune Memory Following Pregnancy Complications. Cells 2022; 11:3935. [PMID: 36497193 PMCID: PMC9741472 DOI: 10.3390/cells11233935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Pregnancy complications can have long-term negative effects on the health of the affected mothers and their children. In this review, we highlight the underlying inflammatory etiologies of common pregnancy complications and discuss how aberrant inflammation may lead to the acquisition of innate immune memory. The latter can be described as a functional epigenetic reprogramming of innate immune cells following an initial exposure to an inflammatory stimulus, ultimately resulting in an altered response following re-exposure to a similar inflammatory stimulus. We propose that aberrant maternal inflammation associated with complications of pregnancy increases the cross-generational risk of developing noncommunicable diseases (i.e., pregnancy complications, cardiovascular disease, and metabolic disease) through a process mediated by innate immune memory. Elucidating a role for innate immune memory in the cross-generational health consequences of pregnancy complications may lead to the development of novel strategies aimed at reducing the long-term risk of disease.
Collapse
Affiliation(s)
| | - Alexa J. Toews
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Moldenhauer LM, Hull ML, Foyle KL, McCormack CD, Robertson SA. Immune–Metabolic Interactions and T Cell Tolerance in Pregnancy. THE JOURNAL OF IMMUNOLOGY 2022; 209:1426-1436. [DOI: 10.4049/jimmunol.2200362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Pregnancy depends on a state of maternal immune tolerance mediated by CD4+ regulatory T (Treg) cells. Uterine Treg cells release anti-inflammatory factors, inhibit effector immunity, and support adaptation of the uterine vasculature to facilitate placental development. Insufficient Treg cells or inadequate functional competence is implicated in infertility and recurrent miscarriage, as well as pregnancy complications preeclampsia, fetal growth restriction, and preterm birth, which stem from placental insufficiency. In this review we address an emerging area of interest in pregnancy immunology–the significance of metabolic status in regulating the Treg cell expansion required for maternal–fetal tolerance. We describe how hyperglycemia and insulin resistance affect T cell responses to suppress generation of Treg cells, summarize data that implicate a role for altered glucose metabolism in impaired maternal–fetal tolerance, and explore the prospect of targeting dysregulated metabolism to rebalance the adaptive immune response in women experiencing reproductive disorders.
Collapse
Affiliation(s)
- Lachlan M. Moldenhauer
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - M. Louise Hull
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Kerrie L. Foyle
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Catherine D. McCormack
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
- †Women’s and Children’s Hospital, North Adelaide, Adelaide, South Australia, Australia
| | - Sarah A. Robertson
- *Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia; and
| |
Collapse
|
12
|
Qin D, Xu H, Chen Z, Deng X, Jiang S, Zhang X, Bao S. The peripheral and decidual immune cell profiles in women with recurrent pregnancy loss. Front Immunol 2022; 13:994240. [PMID: 36177021 PMCID: PMC9513186 DOI: 10.3389/fimmu.2022.994240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) affects 1-2% of couples of reproductive age. Immunological analysis of the immune status in RPL patients might contribute to the diagnosis and treatment of RPL. However, the exact immune cell composition in RPL patients is still unclear. Here, we used flow cytometry to investigate the immune cell profiles of peripheral blood and decidual tissue of women who experienced RPL. We divided peripheral immune cells into 14 major subgroups, and the percentages of T, natural killer T (NKT)-like and B cells in peripheral blood were increased in RPL patients. The decidual immune cells were classified into 14 major subpopulations and the percentages of decidual T, NKT-like cells and CD11chi Mφ were increased, while those of CD56hi decidual NK cells and CD11clo Mφ were decreased in RPL patients. The spearmen correlation analysis showed that the proportion of peripheral and decidual immune cells did not show significant correlations with occurrences of previous miscarriages. By using flow cytometry, we depicted the global peripheral and decidual immune landscape in RPL patients. The abnormalities of peripheral and decidual immune cells may be involved in RPL, but the correlations with the number of previous miscarriages need further verification.
Collapse
Affiliation(s)
- Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| | - Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Shihua Bao, ; Xiaoming Zhang,
| |
Collapse
|