1
|
Yang S, Li D. Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review). Oncol Lett 2024; 28:431. [PMID: 39049985 PMCID: PMC11268089 DOI: 10.3892/ol.2024.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer has surpassed lung cancer as the most prevalent malignancy affecting women worldwide. Triple-negative breast cancer (TNBC) is the type of breast cancer with the worst prognosis. As a heterogeneous disease, TNBC has a pathogenesis that involves multiple oncogenic pathways, including involvement of gene mutations and alterations in signaling pathways. MicroRNAs (miRNAs) are small endogenous, single-stranded non-coding RNAs that bind to the 3' untranslated region of target cell mRNAs to negatively regulate the gene expression of these specific mRNAs. Therefore, miRNAs are involved in cell growth, development, division and differentiation stages. miRNAs are also involved in gene targeting in tumorigenesis, tumor growth and the regulation of metastasis, including in breast cancer. Meanwhile, miRNAs also regulate components of signaling pathways. In this review, the role of miRNAs in the TNBC signaling pathway discovered in recent years is described in detail. The new concept of bi-targeted therapy for breast cancer using miRNA and artificial intelligence is also discussed.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Donghai Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
2
|
Xu P, Feng DX, Wang J, Wang YD, Xie G, Zhang B, Li XH, Zeng JW, Feng JF. LncRNA AGAP2 antisense RNA 1 stabilized by insulin-like growth factor 2 mRNA binding protein 3 promotes macrophage M2 polarization in clear cell renal cell carcinoma through regulation of the microRNA-9-5p/THBS2/PI3K-Akt pathway. Cancer Cell Int 2023; 23:330. [PMID: 38110984 PMCID: PMC10729468 DOI: 10.1186/s12935-023-03173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Increasing evidence highlights the potential role of long non-coding RNAs (lncRNAs) in the biological behaviors of renal cell carcinoma (RCC). Here, we explored the mechanism of AGAP2-AS1 in the occurrence and development of clear cell RCC (ccRCC) involving IGF2BP3/miR-9-5p/THBS2. METHODS The expressions of AGAP2-AS1, IGF2BP3, miR-9-5p, and THBS2 and their relationship were analyzed by bioinformatics. The targeting relationship between AGAP2-AS1 and miR-9-5p and between miR-9-5p and THBS2 was evaluated with their effect on cell biological behaviors and macrophage polarization assayed. Finally, we tested the effect of AGAP2-AS1 on ccRCC tumor formation in xenograft tumors. RESULTS IGF2BP3 could stabilize AGAP2-AS1 through m6A modification. AGAP2-AS1 was highly expressed in ccRCC tissues and cells. The lentivirus-mediated intervention of AGAP2-AS1 induced malignant behaviors of ccRCC cells and led to M2 polarization of macrophages. In addition, THBS2 promoted M2 polarization of macrophages by activating the PI3K/AKT signaling pathway. AGAP2-AS1 could directly bind with miR-9-5p and promote the expression of THBS2 downstream of miR-9-5p. These results were further verified by in vivo experiments. CONCLUSION AGAP2-AS1 stabilized by IGF2BP3 competitively binds to miR-9-5p to up-regulate THBS2, activating the PI3K/AKT signaling pathway and inducing macrophage M2 polarization, thus facilitating the development of RCC.
Collapse
Affiliation(s)
- Peng Xu
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Da-Xiong Feng
- Department of Spine Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jun Wang
- Department of Laboratory Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610045, People's Republic of China
| | - Yao-Dong Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China
- Department of Urology Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Gang Xie
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Xiao-Han Li
- Department of Medical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jia-Wei Zeng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China.
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| | - Jia-Fu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, Sichuan, 621000, People's Republic of China.
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| |
Collapse
|
3
|
Yuan D, Liu J, Sang W, Li Q. Comprehensive analysis of the role of SFXN family in breast cancer. Open Med (Wars) 2023; 18:20230685. [PMID: 37020524 PMCID: PMC10068752 DOI: 10.1515/med-2023-0685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
Abstract
The sideroflexin (SFXN) family is a group of mitochondrial membrane proteins. Although the function of the SFXN family in mitochondria has been widely recognized, the expression levels, role, and prognostic value of this family in breast cancer (BC) have not been clearly articulated and systematically analysed. In our research, SFXN1 and SFXN2 were significantly upregulated in BC versus normal samples based on Gene Expression Profiling Interactive Analysis 2 and the Human Protein Atlas databases. We found that high SFXN1 expression was significantly related to poor prognosis in BC patients and that high SFXN2 expression was significantly associated with good prognosis in BC patients. Gene Ontology analysis of the SFXN family was performed based on the STRING database to explore the potential functions of this family, including biological processes, cellular components, and molecular functions. Based on the MethSurv database, we found that two SFXN1 CpG sites (5′-UTR-S_Shelf-cg06573254 and TSS200-Island-cg17647431), two SFXN2 CpG sites (3′-UTR-Open_Sea-cg04774043 and Body-Open_Sea-cg18994254), one SFXN3 CpG site (Body-S_Shelf-cg17858697), and nine SFXN5 CpG sites (1stExon;5′-UTR-Island-cg03856450, Body-Open_Sea-cg04016113, Body-Open_Sea-cg04197631, Body-Open_Sea-cg07558704, Body-Open_Sea-cg08383863, Body-Open_Sea-cg10040131, Body-Open_Sea-cg10588340, Body-Open_Sea-cg17046766, and Body-Open_Sea-cg22830638) were significantly related to the prognosis of BC patients. According to the ENCORI database, four negative regulatory miRNAs for SFXN1 (hsa-miR-22-3p, hsa-miR-140-5p, hsa-miR-532-5p, and hsa-miR-582-3p) and four negative regulatory miRNAs for SFXN2 (hsa-miR-9-5p, hsa-miR-34a-5p, hsa-miR-532-5p, and hsa-miR-885-5p) were related to poor prognosis for BC patients. This study suggests that SFXN1 and SFXN2 are valuable biomarkers and treatment targets for patients with BC.
Collapse
Affiliation(s)
- Ding Yuan
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Jialiang Liu
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Wenbo Sang
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Qing Li
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| |
Collapse
|
4
|
Melnik BC, John SM, Carrera-Bastos P, Cordain L, Leitzmann C, Weiskirchen R, Schmitz G. The Role of Cow's Milk Consumption in Breast Cancer Initiation and Progression. Curr Nutr Rep 2023; 12:122-140. [PMID: 36729355 PMCID: PMC9974716 DOI: 10.1007/s13668-023-00457-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW This review evaluates cow milk's impact on breast carcinogenesis by linking recent epidemiological evidence and new insights into the molecular signaling of milk and its constituents in breast cancer (BCa) pathogenesis. RECENT FINDINGS Recent prospective cohort studies support the association between cow's milk consumption and the risk of estrogen receptor-α-positive (ER+) BCa. Milk is a complex biological fluid that increases systemic insulin-like growth factor 1 (IGF-1), insulin and estrogen signaling, and interacting hormonal promoters of BCa. Further potential oncogenic components of commercial milk include exosomal microRNAs (miR-148a-3p, miR-21-5p), bovine meat and milk factors, aflatoxin M1, bisphenol A, pesticides, and micro- and nanoplastics. Individuals with BRCA1 loss-of-function mutations and FTO and IGF1 gain-of-function polymorphisms enhancing IGF-1/mTORC1 signaling may be at increased risk for milk-induced ER+ BCa. Recent prospective epidemiological and pathobiochemical studies identify commercial milk consumption as a critical risk factor of ER+ BCa. Large meta-analyses gathering individuals of different ethnic origins with milk derived from dairy cows of varying genetic backgrounds and diverse feeding procedures as well as missing data on thermal processing of milk (pasteurization versus ultra-heat treatment) make multi-national meta-analyses unsuitable for BCa risk estimations in susceptible populations. Future studies are required that consider all vulnerable periods of breast carcinogenesis to cow's milk exposure, beginning during the perinatal period and puberty, since these are the most critical periods of mammary gland morphogenesis. Notwithstanding the need for better studies including detailed information on milk processing and vulnerable periods of human breast carcinogenesis, the available evidence suggests that dietary guidelines on milk consumption may have to be reconsidered.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany.
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076, Osnabrück, Germany
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm) at the University of Osnabrück, Lower-Saxonian Institute of Occupational Dermatology (NIB), Osnabrück, Germany
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, 205 02, Malmö, Sweden
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670, Madrid, Spain
- Centro de Estudios Avanzados en Nutrición (CEAN), 11007, Cádiz, Spain
| | | | - Claus Leitzmann
- Institute of Nutrition, University of Giessen, 35390, Giessen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074, Aachen, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
5
|
Duque G, Manterola C, Otzen T, Arias C, Palacios D, Mora M, Galindo B, Holguín JP, Albarracín L. Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast
Cancer: A Systematic Review. Clin Med Insights Oncol 2022; 16:11795549221134831. [PMCID: PMC9634213 DOI: 10.1177/11795549221134831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid
biopsy (LB) is a non-invasive diagnostic technique that allows the analysis
of biomarkers in different body fluids, particularly in peripheral blood and
also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal
secretions, breast milk, and tears. The objective was to analyze the
available evidence related to the use of biomarkers obtained by LB for the
early diagnosis of BC. Methods: Articles related to the use of biomarkers for the early diagnosis of BC due
to LB, published between 2010 and 2022, from the databases (WoS, EMBASE,
PubMed, and SCOPUS) were included. The MInCir diagnostic scale was applied
in the articles to determine their methodological quality (MQ). Descriptive
statistics were used, as well as determination of weighted averages of each
variable, to analyze the extracted data. Sensitivity, specificity, and area
under the curve values for specific biomarkers (individual or in panels) are
described. Results: In this systematic review (SR), 136 articles met the selection criteria,
representing 17 709 patients with BC. However, 95.6% were case-control
studies. In 96.3% of cases, LB was performed in peripheral blood samples.
Most of the articles were based on microRNA (miRNA) analysis. The mean MQ
score was 25/45 points. Sensitivity, specificity, and area under the curve
values for specific biomarkers (individual or in panels) have been
found. Conclusions: The determination of biomarkers through LB is a useful mechanism for the
diagnosis of BC. The analysis of miRNA in peripheral blood is the most
studied methodology. Our results indicate that LB has a high sensitivity and
specificity for the diagnosis of BC, especially in early stages.
Collapse
Affiliation(s)
- Galo Duque
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador,Galo Duque, Faculty of Medicine,
Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca,
Ecuador 010107.
| | - Carlos Manterola
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Tamara Otzen
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Center of Excellence in Morphological
and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Cristina Arias
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | | | - Miriann Mora
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Bryan Galindo
- Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Juan Pablo Holguín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile,Faculty of Medicine, Universidad del
Azuay, Cuenca, Ecuador
| | - Lorena Albarracín
- Medical Sciences PhD Program,
Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
7
|
Carvalho TM, Brasil GO, Jucoski TS, Adamoski D, de Lima RS, Spautz CC, Anselmi KF, Ozawa PMM, Cavalli IJ, Carvalho de Oliveira J, Gradia DF, Ribeiro EMDSF. MicroRNAs miR-142-5p, miR-150-5p, miR-320a-3p, and miR-4433b-5p in Serum and Tissue: Potential Biomarkers in Sporadic Breast Cancer. Front Genet 2022; 13:865472. [PMID: 35846122 PMCID: PMC9280295 DOI: 10.3389/fgene.2022.865472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, and establishing biomarkers is essential to patient management. We previously described that extracellular vesicle–derived miRNAs (EV-miRNAs) miR-142-5p, miR-150-5p, miR-320a, and miR-4433b-5p in serum discriminated BC from control samples, either alone or combined in a panel. Using these previously described markers, we intend to evaluate whether the same markers identified in EVs are also potential biomarkers in tissue and serum. Expression analysis using RT-qPCR was performed using serum of 67 breast cancer patients (BC-S), 19 serum controls (CT), 83 fresh tumor tissues (BC-T), and 29 adjacent nontumor tissue samples (NT). In addition, analysis from The Cancer Genome Atlas (TCGA) data (832 BC-T and 136 NT) was performed. In all comparisons, we found concordant high expression levels of miR-320a and miR-4433b-5p in BC-S compared to CT in both EVs and cell-free miRNAs (cf-miRNAs). Although miR-150-5p and miR-142-5p were not found to be differentially expressed in serum, panels including these miRNAs improved sensitivity and specificity, supporting our previous findings in EVs. Fresh tissue and data from the TCGA database had, in most comparisons, an opposite behavior when compared to serum and EVs: lower levels of all miRNAs in BC-T than those in NT samples. TCGA analyses revealed reduced expression levels of miR-150-5p and miR-320a-3p in BC-T than those in NT samples and the overexpression of miR-142-5p in BC-T, unlike our RT-qPCR results from tissue in the Brazilian cohort. The fresh tissue analysis showed that all miRNAs individually could discriminate between BC-T and NT in the Brazilian cohort, with high sensitivity and sensibility. Furthermore, combining panels showed higher AUC values and improved sensitivity and specificity. In addition, lower levels of miR-320a-3p in serum were associated with poor overall survival in BC Brazilian patients. In summary, we observed that miR-320a and miR-4433b-5p distinguished BC from controls with high specificity and sensibility, regardless of the sample source. In addition, lower levels of miR-150-5p and higher levels of miR-142-5p were statistically significant biomarkers in tissue, according to TCGA. When combined in panels, all combinations could distinguish BC patients from controls. These results highlight a potential application of these miRNAs as BC biomarkers.
Collapse
Affiliation(s)
- Tamyres Mingorance Carvalho
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Guillermo Ortiz Brasil
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Douglas Adamoski
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Sao Paulo, Brazil
| | | | | | | | - Patricia Midori Murobushi Ozawa
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Iglenir João Cavalli
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Enilze Maria de Souza Fonseca Ribeiro
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- *Correspondence: Enilze Maria de Souza Fonseca Ribeiro,
| |
Collapse
|