1
|
Gou F, Liu J, Xiao C, Wu J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics (Basel) 2024; 14:1472. [PMID: 39061610 PMCID: PMC11275417 DOI: 10.3390/diagnostics14141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of economic conditions and the increase in living standards, people's attention in regard to health is also continuously increasing. They are beginning to place their hopes on machines, expecting artificial intelligence (AI) to provide a more humanized medical environment and personalized services, thus greatly expanding the supply and bridging the gap between resource supply and demand. With the development of IoT technology, the arrival of the 5G and 6G communication era, and the enhancement of computing capabilities in particular, the development and application of AI-assisted healthcare have been further promoted. Currently, research on and the application of artificial intelligence in the field of medical assistance are continuously deepening and expanding. AI holds immense economic value and has many potential applications in regard to medical institutions, patients, and healthcare professionals. It has the ability to enhance medical efficiency, reduce healthcare costs, improve the quality of healthcare services, and provide a more intelligent and humanized service experience for healthcare professionals and patients. This study elaborates on AI development history and development timelines in the medical field, types of AI technologies in healthcare informatics, the application of AI in the medical field, and opportunities and challenges of AI in the field of medicine. The combination of healthcare and artificial intelligence has a profound impact on human life, improving human health levels and quality of life and changing human lifestyles.
Collapse
Affiliation(s)
- Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Chunwen Xiao
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
He Z, Liu J, Gou F, Wu J. An Innovative Solution Based on TSCA-ViT for Osteosarcoma Diagnosis in Resource-Limited Settings. Biomedicines 2023; 11:2740. [PMID: 37893113 PMCID: PMC10604772 DOI: 10.3390/biomedicines11102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Identifying and managing osteosarcoma pose significant challenges, especially in resource-constrained developing nations. Advanced diagnostic methods involve isolating the nucleus from cancer cells for comprehensive analysis. However, two main challenges persist: mitigating image noise during the capture and transmission of cellular sections, and providing an efficient, accurate, and cost-effective solution for cell nucleus segmentation. To tackle these issues, we introduce the Twin-Self and Cross-Attention Vision Transformer (TSCA-ViT). This pioneering AI-based system employs a directed filtering algorithm for noise reduction and features an innovative transformer architecture with a twin attention mechanism for effective segmentation. The model also incorporates cross-attention-enabled skip connections to augment spatial information. We evaluated our method on a dataset of 1000 osteosarcoma pathology slide images from the Second People's Hospital of Huaihua, achieving a remarkable average precision of 97.7%. This performance surpasses traditional methodologies. Furthermore, TSCA-ViT offers enhanced computational efficiency owing to its fewer parameters, which results in reduced time and equipment costs. These findings underscore the superior efficacy and efficiency of TSCA-ViT, offering a promising approach for addressing the ongoing challenges in osteosarcoma diagnosis and treatment, particularly in settings with limited resources.
Collapse
Affiliation(s)
- Zengxiao He
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China;
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Liu Z, Lv Q, Yang Z, Li Y, Lee CH, Shen L. Recent progress in transformer-based medical image analysis. Comput Biol Med 2023; 164:107268. [PMID: 37494821 DOI: 10.1016/j.compbiomed.2023.107268] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.
Collapse
Affiliation(s)
- Zhaoshan Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| | - Qiujie Lv
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore; School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China.
| | - Ziduo Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore; School of Intelligent Systems Engineering, Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, 518107, China.
| | - Yifan Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| | - Chau Hung Lee
- Department of Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| |
Collapse
|
4
|
Rich JM, Bhardwaj LN, Shah A, Gangal K, Rapaka MS, Oberai AA, Fields BKK, Matcuk GR, Duddalwar VA. Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis. FRONTIERS IN RADIOLOGY 2023; 3:1241651. [PMID: 37614529 PMCID: PMC10442705 DOI: 10.3389/fradi.2023.1241651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023]
Abstract
Introduction Image segmentation is an important process for quantifying characteristics of malignant bone lesions, but this task is challenging and laborious for radiologists. Deep learning has shown promise in automating image segmentation in radiology, including for malignant bone lesions. The purpose of this review is to investigate deep learning-based image segmentation methods for malignant bone lesions on Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron-Emission Tomography/CT (PET/CT). Method The literature search of deep learning-based image segmentation of malignant bony lesions on CT and MRI was conducted in PubMed, Embase, Web of Science, and Scopus electronic databases following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A total of 41 original articles published between February 2017 and March 2023 were included in the review. Results The majority of papers studied MRI, followed by CT, PET/CT, and PET/MRI. There was relatively even distribution of papers studying primary vs. secondary malignancies, as well as utilizing 3-dimensional vs. 2-dimensional data. Many papers utilize custom built models as a modification or variation of U-Net. The most common metric for evaluation was the dice similarity coefficient (DSC). Most models achieved a DSC above 0.6, with medians for all imaging modalities between 0.85-0.9. Discussion Deep learning methods show promising ability to segment malignant osseous lesions on CT, MRI, and PET/CT. Some strategies which are commonly applied to help improve performance include data augmentation, utilization of large public datasets, preprocessing including denoising and cropping, and U-Net architecture modification. Future directions include overcoming dataset and annotation homogeneity and generalizing for clinical applicability.
Collapse
Affiliation(s)
- Joseph M. Rich
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lokesh N. Bhardwaj
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Aman Shah
- Department of Applied Biostatistics and Epidemiology, University of Southern California, Los Angeles, CA, United States
| | - Krish Gangal
- Bridge UnderGrad Science Summer Research Program, Irvington High School, Fremont, CA, United States
| | - Mohitha S. Rapaka
- Department of Biology, University of Texas at Austin, Austin, TX, United States
| | - Assad A. Oberai
- Department of Aerospace and Mechanical Engineering Department, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Brandon K. K. Fields
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - George R. Matcuk
- Department of Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
- Department of Radiology, USC Radiomics Laboratory, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Lim CC, Ling AHW, Chong YF, Mashor MY, Alshantti K, Aziz ME. Comparative Analysis of Image Processing Techniques for Enhanced MRI Image Quality: 3D Reconstruction and Segmentation Using 3D U-Net Architecture. Diagnostics (Basel) 2023; 13:2377. [PMID: 37510120 PMCID: PMC10377862 DOI: 10.3390/diagnostics13142377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a common type of bone tumor, particularly prevalent in children and adolescents between the ages of 5 and 25 who are experiencing growth spurts during puberty. Manual delineation of tumor regions in MRI images can be laborious and time-consuming, and results may be subjective and difficult to replicate. Therefore, a convolutional neural network (CNN) was developed to automatically segment osteosarcoma cancerous cells in three types of MRI images. The study consisted of five main stages. First, 3692 DICOM format MRI images were acquired from 46 patients, including T1-weighted, T2-weighted, and T1-weighted with injection of Gadolinium (T1W + Gd) images. Contrast stretching and median filter were applied to enhance image intensity and remove noise, and the pre-processed images were reconstructed into NIfTI format files for deep learning. The MRI images were then transformed to fit the CNN's requirements. A 3D U-Net architecture was proposed with optimized parameters to build an automatic segmentation model capable of segmenting osteosarcoma from the MRI images. The 3D U-Net segmentation model achieved excellent results, with mean dice similarity coefficients (DSC) of 83.75%, 85.45%, and 87.62% for T1W, T2W, and T1W + Gd images, respectively. However, the study found that the proposed method had some limitations, including poorly defined borders, missing lesion portions, and other confounding factors. In summary, an automatic segmentation method based on a CNN has been developed to address the challenge of manually segmenting osteosarcoma cancerous cells in MRI images. While the proposed method showed promise, the study revealed limitations that need to be addressed to improve its efficacy.
Collapse
Affiliation(s)
- Chee Chin Lim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Sport Engineering Research Centre (SERC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Apple Ho Wei Ling
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Yen Fook Chong
- Sport Engineering Research Centre (SERC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | - Mohd Yusoff Mashor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
- Sport Engineering Research Centre (SERC), Universiti Malaysia Perlis, Arau 02600, Perlis, Malaysia
| | | | - Mohd Ezane Aziz
- Department of Radiology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
6
|
Lv B, Liu F, Li Y, Nie J, Gou F, Wu J. Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images. Diagnostics (Basel) 2023; 13:1063. [PMID: 36980371 PMCID: PMC10047640 DOI: 10.3390/diagnostics13061063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive. The manual screening of medical images is time-consuming and laborious, and computer technology is now being introduced to aid in diagnosis. Due to a large amount of noise and blurred lesion edges in osteosarcoma MRI images, high-precision segmentation methods require large computational resources and are difficult to use in developing countries with limited conditions. Therefore, this study proposes an artificial intelligence-aided diagnosis scheme by enhancing image edge features. First, a threshold screening filter (TSF) was used to pre-screen the MRI images to filter redundant data. Then, a fast NLM algorithm was introduced for denoising. Finally, a segmentation method with edge enhancement (TBNet) was designed to segment the pre-processed images by fusing Transformer based on the UNet network. TBNet is based on skip-free connected U-Net and includes a channel-edge cross-fusion transformer and a segmentation method with a combined loss function. This solution optimizes diagnostic efficiency and solves the segmentation problem of blurred edges, providing more help and reference for doctors to diagnose osteosarcoma. The results based on more than 4000 osteosarcoma MRI images show that our proposed method has a good segmentation effect and performance, with Dice Similarity Coefficient (DSC) reaching 0.949, and show that other evaluation indexes such as Intersection of Union (IOU) and recall are better than other methods.
Collapse
Affiliation(s)
- Baolong Lv
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Feng Liu
- School of Information Engineering, Shandong Youth University of Political Science, Jinan 250102, China
- New Technology Research and Development Center of Intelligent Information Controlling in Universities of Shandong, Jinan 250103, China
| | - Yulin Li
- School of Modern Service Management, Shandong Youth University of Political Science, Jinan 250102, China; (B.L.); (Y.L.)
| | - Jianhua Nie
- Shandong Provincial People’s Government Administration Guarantee Center, Jinan 250011, China;
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410017, China;
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Zhan X, Liu J, Long H, Zhu J, Tang H, Gou F, Wu J. An Intelligent Auxiliary Framework for Bone Malignant Tumor Lesion Segmentation in Medical Image Analysis. Diagnostics (Basel) 2023; 13:223. [PMID: 36673032 PMCID: PMC9858155 DOI: 10.3390/diagnostics13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Bone malignant tumors are metastatic and aggressive, with poor treatment outcomes and prognosis. Rapid and accurate diagnosis is crucial for limb salvage and increasing the survival rate. There is a lack of research on deep learning to segment bone malignant tumor lesions in medical images with complex backgrounds and blurred boundaries. Therefore, we propose a new intelligent auxiliary framework for the medical image segmentation of bone malignant tumor lesions, which consists of a supervised edge-attention guidance segmentation network (SEAGNET). We design a boundary key points selection module to supervise the learning of edge attention in the model to retain fine-grained edge feature information. We precisely locate malignant tumors by instance segmentation networks while extracting feature maps of tumor lesions in medical images. The rich contextual-dependent information in the feature map is captured by mixed attention to better understand the uncertainty and ambiguity of the boundary, and edge attention learning is used to guide the segmentation network to focus on the fuzzy boundary of the tumor region. We implement extensive experiments on real-world medical data to validate our model. It validates the superiority of our method over the latest segmentation methods, achieving the best performance in terms of the Dice similarity coefficient (0.967), precision (0.968), and accuracy (0.996). The results prove the important contribution of the framework in assisting doctors to improve the accuracy of diagnosis and clinical efficiency.
Collapse
Affiliation(s)
- Xiangbing Zhan
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Huiyun Long
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Haoyu Tang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
8
|
Tang H, Huang H, Liu J, Zhu J, Gou F, Wu J. AI-Assisted Diagnosis and Decision-Making Method in Developing Countries for Osteosarcoma. Healthcare (Basel) 2022; 10:2313. [PMID: 36421636 PMCID: PMC9690527 DOI: 10.3390/healthcare10112313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma is a malignant tumor derived from primitive osteogenic mesenchymal cells, which is extremely harmful to the human body and has a high mortality rate. Early diagnosis and treatment of this disease is necessary to improve the survival rate of patients, and MRI is an effective tool for detecting osteosarcoma. However, due to the complex structure and variable location of osteosarcoma, cancer cells are highly heterogeneous and prone to aggregation and overlap, making it easy for doctors to inaccurately predict the area of the lesion. In addition, in developing countries lacking professional medical systems, doctors need to examine mass of osteosarcoma MRI images of patients, which is time-consuming and inefficient, and may result in misjudgment and omission. For the sake of reducing labor cost and improve detection efficiency, this paper proposes an Attention Condenser-based MRI image segmentation system for osteosarcoma (OMSAS), which can help physicians quickly locate the lesion area and achieve accurate segmentation of the osteosarcoma tumor region. Using the idea of AttendSeg, we constructed an Attention Condenser-based residual structure network (ACRNet), which greatly reduces the complexity of the structure and enables smaller hardware requirements while ensuring the accuracy of image segmentation. The model was tested on more than 4000 samples from two hospitals in China. The experimental results demonstrate that our model has higher efficiency, higher accuracy and lighter structure for osteosarcoma MRI image segmentation compared to other existing models.
Collapse
Affiliation(s)
- Haojun Tang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Hui Huang
- The First People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|