1
|
Myovela H, Hussein J, Tibuhwa D. Treasures in our backyard: unleashing the biotechnological potentials of endophytic fungi from Tanzanian mangroves. Nat Prod Res 2024:1-9. [PMID: 39225386 DOI: 10.1080/14786419.2024.2395492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Endophytic fungi are useful in a variety of biological processes and may find value in pharmaceutical settings. However, there hasn't been much research done on the bioactive compounds produced by mangrove fungal endophytes from the East African coast. Our previous research revealed a significant number of mangrove endophytic fungi in Dar es Salaam, Tanzania. This study explores the antimicrobial and cytotoxic properties of these endophytic fungi. Crude extracts of 34 mangrove endophytic fungal isolates were screened, with thirteen showing antimicrobial activity against tested microorganisms. MIC and cytotoxicity tests revealed varying bioactivity. Aspergillus fumigatus (HMD45) was particularly potent against tested organisms (MIC = <0.195 to 0.391 mg/ml) and (LC50 = 36.001). GC-MS evaluation of HMD45 extracts indicated the existence of compounds including dodecanoic acid, n-heptadecanol-1, and n-hexadecanoic acid, which may contribute to its bioactivity. These findings offer insight into the bioactivity of mangrove endophytic fungi and trigger interest for further research.
Collapse
Affiliation(s)
- Hawa Myovela
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Juma Hussein
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Donatha Tibuhwa
- Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| |
Collapse
|
2
|
Manathunga KK, Gunasekara NW, Meegahakumbura MK, Ratnaweera PB, Faraj TK, Wanasinghe DN. Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops. J Fungi (Basel) 2024; 10:606. [PMID: 39330366 PMCID: PMC11433156 DOI: 10.3390/jof10090606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The yield and quality of cultivated food crops are frequently compromised by the prevalent threat from fungal pathogens that can cause widespread damage in both the pre-harvest and post-harvest stages. This paper investigates the challenges posed by fungal pathogens to the sustainability and yield of essential food crops, leading to significant economic and food security repercussions. The paper critiques the long-standing reliance on synthetic fungicides, emphasizing the environmental and health concerns arising from their widespread and occasionally inappropriate use. In response, the paper explores the potential of biological control agents, specifically endophytic fungi in advancing sustainable agricultural practices. Through their diverse symbiotic relationships with host plants, these fungi exhibit strong antagonistic capabilities against phytopathogenic fungi by producing various bioactive compounds and promoting plant growth. The review elaborates on the direct and indirect mechanisms of endophytic antagonism, such as antibiosis, mycoparasitism, induction of host resistance, and competition for resources, which collectively contribute to inhibiting pathogenic fungal growth. This paper consolidates the crucial role of endophytic fungi, i.e., Acremonium, Alternaria, Arthrinium, Aspergillus, Botryosphaeria, Chaetomium, Cladosporium, Cevidencealdinia, Epicoccum, Fusarium, Gliocladium, Muscodor, Nigrospora, Paecilomyces, Penicillium, Phomopsis, Pichia, Pochonia, Pythium, Ramichloridium, Rosellinia, Talaromyces, Trichoderma, Verticillium, Wickerhamomyces, and Xylaria, in biological control, supported by the evidence drawn from more than 200 research publications. The paper pays particular attention to Muscodor, Penicillium, and Trichoderma as prominent antagonists. It also emphasizes the need for future genetic-level research to enhance the application of endophytes in biocontrol strategies aiming to highlight the importance of endophytic fungi in facilitating the transition towards more sustainable and environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Kumudu K. Manathunga
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Badulla 90000, Sri Lanka; (K.K.M.); (P.B.R.)
| | - Niranjan W. Gunasekara
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka;
| | - Muditha K. Meegahakumbura
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka;
| | - Pamoda B. Ratnaweera
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Badulla 90000, Sri Lanka; (K.K.M.); (P.B.R.)
| | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia;
| | - Dhanushka N. Wanasinghe
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia;
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
3
|
Tripathi A, Pandey VK, Jha AK, Srivastava S, Jakhar S, Vijay, Singh G, Rustagi S, Malik S, Choudhary P. Intricacies of plants' innate immune responses and their dynamic relationship with fungi: A review. Microbiol Res 2024; 285:127758. [PMID: 38781787 DOI: 10.1016/j.micres.2024.127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The role of the plant innate immune system in the defense and symbiosis processes becomes integral in a complex network of interactions between plants and fungi. An understanding of the molecular characterization of the plant innate immune system is crucial because it constitutes plants' self-defense shield against harmful fungi, while creating mutualistic relationships with beneficial fungi. Due to the plant-induced awareness and their complexity of interaction with fungi, sufficient assessment of the participation of the plant innate immune system in ecological balance, agriculture, and maintenance of an infinite ecosystem is mandatory. Given the current global challenge, such as the surge of plant-infectious diseases, and pursuit of sustainable forms of agriculture; it is imperative to understand the molecular language of communication between plants and fungi. That knowledge can be practically used in diverse areas, e.g., in agriculture, new tactics may be sought after to try new methods that boost crop receptiveness against fungal pathogens and reduce the dependence on chemical management. Also, it could boost sustainable agricultural practices via enhancing mycorrhizal interactions that promote nutrient absorption and optimum cropping with limited exposure of environmental contamination. Moreover, this review offers insights that go beyond agriculture and can be manipulated to boost plant conservation, environmental restoration, and quality understanding of host-pathogen interactions. Consequently, this specific review paper has offered a comprehensive view of the complex plant innate immune-based responses with fungi and the mechanisms in which they interact.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University) Faridabad 121004 Haryana, India.
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Sourabh Jakhar
- Division of Integrated Farming System, ICAR-Central Arid Zone Research Institute, Jodhpur 342003, India
| | - Vijay
- Department of Fruit Science, Maharana Pratap Horticultural University, Karnal, Haryana 132001, India
| | - Gurmeet Singh
- Department of chemistry, Guru Nanak College of Pharmaceutical & Paramedical Sciences, Dehradun, Uttarakhand, India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India; Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University, Mohali, Punjab 140413, India
| | - Priyvart Choudhary
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
4
|
Chandrakasan G, García-Trejo JF, Feregrino-Pérez AA, Aguirre-Becerra H, García ER, Nieto-Ramírez MI. Preliminary Screening on Antibacterial Crude Secondary Metabolites Extracted from Bacterial Symbionts and Identification of Functional Bioactive Compounds by FTIR, HPLC and Gas Chromatography-Mass Spectrometry. Molecules 2024; 29:2914. [PMID: 38930979 PMCID: PMC11206551 DOI: 10.3390/molecules29122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.
Collapse
Affiliation(s)
- Gobinath Chandrakasan
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | - Juan Fernando García-Trejo
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | | | | | | | | |
Collapse
|
5
|
Muhammad M, Basit A, Ali K, Ahmad H, Li WJ, Khan A, Mohamed HI. A review on endophytic fungi: a potent reservoir of bioactive metabolites with special emphasis on blight disease management. Arch Microbiol 2024; 206:129. [PMID: 38416214 DOI: 10.1007/s00203-023-03828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024]
Abstract
Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Abdul Basit
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Korea
| | - Kashif Ali
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Haris Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ayesha Khan
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25120, Pakistan
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
6
|
Sharma N, Koul M, Joshi NC, Dufossé L, Mishra A. Fungal-Bacterial Combinations in Plant Health under Stress: Physiological and Biochemical Characteristics of the Filamentous Fungus Serendipita indica and the Actinobacterium Zhihengliuella sp. ISTPL4 under In Vitro Arsenic Stress. Microorganisms 2024; 12:405. [PMID: 38399809 PMCID: PMC10892705 DOI: 10.3390/microorganisms12020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Fungal-bacterial combinations have a significant role in increasing and improving plant health under various stress conditions. Metabolites secreted by fungi and bacteria play an important role in this process. Our study emphasizes the significance of secondary metabolites secreted by the fungus Serendipita indica alone and by an actinobacterium Zhihengliuella sp. ISTPL4 under normal growth conditions and arsenic (As) stress condition. Here, we evaluated the arsenic tolerance ability of S. indica alone and in combination with Z. sp. ISTPL4 under in vitro conditions. The growth of S. indica and Z. sp. ISTPL4 was measured in varying concentrations of arsenic and the effect of arsenic on spore size and morphology of S. indica was determined using confocal microscopy and scanning electron microscopy. The metabolomics study indicated that S. indica alone in normal growth conditions and under As stress released pentadecanoic acid, glycerol tricaprylate, L-proline and cyclo(L-prolyl-L-valine). Similarly, d-Ribose, 2-deoxy-bis(thioheptyl)-dithioacetal were secreted by a combination of S. indica and Z. sp. ISTPL4. Confocal studies revealed that spore size of S. indica decreased by 18% at 1.9 mM and by 15% when in combination with Z. sp. ISTPL4 at a 2.4 mM concentration of As. Arsenic above this concentration resulted in spore degeneration and hyphae fragmentation. Scanning electron microscopy (SEM) results indicated an increased spore size of S. indica in the presence of Z. sp. ISTPL4 (18 ± 0.75 µm) compared to S. indica alone (14 ± 0.24 µm) under normal growth conditions. Our study concluded that the suggested combination of microbial consortium can be used to increase sustainable agriculture by combating biotic as well as abiotic stress. This is because the metabolites released by the microbial combination display antifungal and antibacterial properties. The metabolites, besides evading stress, also confer other survival strategies. Therefore, the choice of consortia and combination partners is important and can help in developing strategies for coping with As stress.
Collapse
Affiliation(s)
- Neha Sharma
- Amity Institute of Microbial Technology, Amity University, Noida 201313, India; (N.S.); (N.C.J.)
| | - Monika Koul
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India;
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida 201313, India; (N.S.); (N.C.J.)
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| | - Arti Mishra
- Department of Botany, Hansraj College, University of Delhi, Delhi 110007, India;
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
7
|
Sundar RDV, Arunachalam S. Xenomyrothecium tongaense PTS8: a rare endophyte of Polianthes tuberosa with salient antagonism against multidrug-resistant pathogens. Front Microbiol 2024; 15:1327190. [PMID: 38435697 PMCID: PMC10906109 DOI: 10.3389/fmicb.2024.1327190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Endophytes refer to microorganisms residing within the endosphere of plants, particularly perennials, without inflicting noticeable injury or inducing obvious morphological variations to their host plant or host organism. Endophytic fungi, although often overlooked microorganisms, have garnered interest due to their significant biological diversity and ability to produce novel pharmacological substances. Methods In this study, fourteen endophytic fungi retrieved were from the stem of the perennial plant Polianthes tuberosa of the Asparagaceae family. These fungal crude metabolites were tested for antagonistic susceptibility to Multi-Drug Resistant (MDR) pathogens using agar well diffusion, Minimum Inhibitory Concentration (MIC), and Minimum Bactericidal Concentration (MBC) assays. The chequerboard test was used to assess the synergistic impact of active extract. Results and discussion In early antibacterial screening using the Agar plug diffusion test, three of fourteen endophytes demonstrated antagonism against Methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant Enterococcus (VRE). Three isolates were grown in liquid medium and their secondary metabolites were recovered using various organic solvents. Eight extracts from three endophytic fungi displayed antagonism against one or more human pathogens with diameters ranging from 11 to 24 mm. The highest antagonistic effect was obtained in ethyl acetate extract for PTS8 isolate against two MRSA (ATCC 43300, 700699) with 20 ± 0.27 and 22 ± 0.47 mm zones of inhibition, respectively, among different solvent extracts. The extract had MICs of 3.12 ± 0.05 and 1.56 ± 0.05 μg/mL, and MBCs of 50 ± 0.01 and 12.5 ± 0.04 μg/mL, respectively. Antagonism against VRE was 18 ± 0.23 mm Zone of Inhibition (ZOI) with MIC and MBC of 6.25 ± 0.25 and 25 ± 0.01 μg/mL. When ethyl acetate extract was coupled with antibiotics, the chequerboard assay demonstrated a synergistic impact against MDR bacteria. In an antioxidant test, it had an inhibitory impact of 87 ± 0.5% and 88.5 ± 0.5% in 2,2-Diphenyl-1-Picrylhydrazyl and reducing power assay, respectively, at 150 μg/mL concentration. PTS8 was identified as a Xenomyrothecium tongaense strain by 18S rRNA internal transcribed spacer (ITS) sequencing. To our insight, it is the foremost study to demonstrate the presence of an X. tongaense endophyte in the stem of P. tuberosa and the first report to study the antibacterial efficacy of X. tongaense which might serve as a powerful antibacterial source against antibiotic-resistant human infections.
Collapse
Affiliation(s)
- Ranjitha Dhevi V. Sundar
- Laboratory of Microbiology, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Sathiavelu Arunachalam
- Laboratory of Microbiology, Department of Agriculture Microbiology, VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
8
|
Senawong K, Katekaew S, Juntahum S, Laloon K. Impact of Grinding and Sorting Particle Size on Phytochemical Yield in Dipterocarpus alatus Leaf Extract. Int J Biomater 2023; 2023:4512665. [PMID: 38162461 PMCID: PMC10756739 DOI: 10.1155/2023/4512665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The main objective of this study was to investigate the impact of grinding (pretreatment) with a pin mill on the crude extract yields of Dipterocarpus alatus (Yang-Na) leaves. A factorial design in a completely randomized design was conducted to study the combinational effects of sieve sizes (1.0, 1.5, and 3.0 mm) and feed rates (1.0, 1.5, and 3.0 kg min-1), examining the interaction of parameters for grinding oven-dried Yang-Na leaves. Ethanol extraction initially evaluated the influence of Yang-Na leaf powder with diverse particle sizes. When sorting particle size, the crude extract yield increased as the particle size decreased, with 0.038-0.150 mm particles yielding the highest extraction, although yields decline when the particle size is lower than 0.038 mm. The average particle sizes, production capacity, and fineness modulus all exhibited a significant decrease as the sieve size and feeding rate were reduced, while the specific energy consumption showed an inversely proportional relationship with these parameters. Intriguingly, the crude extract yield remained independent of the average particle size. Notably, the highest yield (14.79 g kg-1) was derived from a 0.31 mm average particle size, ground with a 1.5 mm sieve and a 3 kg min-1 feeding rate. This suggests that the pretreatment, involving both grinding conditions and sorting size, has an impact on the performance of the extraction process. However, this study offers an energy-efficient alternative, advocating for using average particle sizes without prior sorting, streamlining the extraction process while maintaining substantial yields. These insights underline the crucial influence of particle size and grinding techniques, advancing our understanding of efficient herbal extraction techniques for industrial applications.
Collapse
Affiliation(s)
- Kritsadang Senawong
- General Education Teaching Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchat Juntahum
- Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kittipong Laloon
- Department of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
- Food, Energy, Water Security Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|