1
|
Fan Y, Sun N, Lv S, Jiang H, Zhang Z, Wang J, Xie Y, Yue X, Hu B, Ju B, Yu P. Prediction of developmental toxic effects of fine particulate matter (PM 2.5) water-soluble components via machine learning through observation of PM 2.5 from diverse urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174027. [PMID: 38906297 DOI: 10.1016/j.scitotenv.2024.174027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The global health implications of fine particulate matter (PM2.5) underscore the imperative need for research into its toxicity and chemical composition. In this study, zebrafish embryos exposed to the water-soluble components of PM2.5 from two cities (Harbin and Hangzhou) with differences in air quality, underwent microscopic examination to identify primary target organs. The Harbin PM2.5 induced dose-dependent organ malformation in zebrafish, indicating a higher level of toxicity than that of the Hangzhou sample. Harbin PM2.5 led to severe deformities such as pericardial edema and a high mortality rate, while the Hangzhou sample exhibited hepatotoxicity, causing delayed yolk sac absorption. The experimental determination of PM2.5 constituents was followed by the application of four algorithms for predictive toxicological assessment. The random forest algorithm correctly predicted each of the effect classes and showed the best performance, suggesting that zebrafish malformation rates were strongly correlated with water-soluble components of PM2.5. Feature selection identified the water-soluble ions F- and Cl- and metallic elements Al, K, Mn, and Be as potential key components affecting zebrafish development. This study provides new insights into the developmental toxicity of PM2.5 and offers a new approach for predicting and exploring the health effects of PM2.5.
Collapse
Affiliation(s)
- Yang Fan
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nannan Sun
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China
| | - Shenchong Lv
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hui Jiang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ziqing Zhang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junjie Wang
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiyi Xie
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yue
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Baolan Hu
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Ju
- Hangzhou SanOmics AI Co., Ltd, Hangzhou 311103, China.
| | - Peilin Yu
- Department of Medical Oncology of the Second Affiliated Hospital, Department of Toxicology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Li D, Zhu Y, Zhang W, Liu J, Yang X, Liu Z, Wei D. AI Prediction of Structural Stability of Nanoproteins Based on Structures and Residue Properties by Mean Pooled Dual Graph Convolutional Network. Interdiscip Sci 2024:10.1007/s12539-024-00662-7. [PMID: 39367992 DOI: 10.1007/s12539-024-00662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024]
Abstract
The structural stability of proteins is an important topic in various fields such as biotechnology, pharmaceuticals, and enzymology. Specifically, understanding the structural stability of protein is crucial for protein design. Artificial design, while pursuing high thermodynamic stability and rigidity of proteins, inevitably sacrifices biological functions closely related to protein flexibility. The thermodynamic stability of proteins is not always optimal when they are highest to perfectly perform their biological functions. Extensive theoretical and experimental screening is often required to obtain stable protein structures. Thus, it becomes critically important to develop a stability prediction model based on the balance between protein stability and bioactivity. To design protein drugs with better functionality in a broader structural space, a novel protein structural stability predictor called PSSP has been developed in this study. PSSP is a mean pooled dual graph convolutional network (GCN) model based on sequence characteristics and secondary structure, distance matrix, graph, and residue properties of a nanoprotein to provide rapid prediction and judgment. This model exhibits excellent robustness in predicting the structural stability of nanoproteins. Comparing with previous artificial intelligence algorithms, the results indicate this model can provide a rapid and accurate assessment of the structural stability of artificially designed proteins, which shows the great promises for promoting the robust development of protein design.
Collapse
Affiliation(s)
- Daixi Li
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China.
- Pengcheng Laboratory, Shenzhen, 518055, China.
| | - Yuqi Zhu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wujie Zhang
- Chemical and Biomolecular Engineering Program, Physics and Chemistry Department, Milwaukee School of Engineering, Milwaukee, 53202, USA
| | - Jing Liu
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Xiaochen Yang
- Institute of Biothermal Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Dongqing Wei
- Pengcheng Laboratory, Shenzhen, 518055, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation, Center On Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Wang X, Zhang S, Zhang T. Crop insect pest detection based on dilated multi-scale attention U-Net. PLANT METHODS 2024; 20:34. [PMID: 38409023 PMCID: PMC10898010 DOI: 10.1186/s13007-024-01163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Crop pests seriously affect the yield and quality of crops. Accurately and rapidly detecting and segmenting insect pests in crop leaves is a premise for effectively controlling insect pests. METHODS Aiming at the detection problem of irregular multi-scale insect pests in the field, a dilated multi-scale attention U-Net (DMSAU-Net) model is constructed for crop insect pest detection. In its encoder, dilated Inception is designed to replace the convolution layer in U-Net to extract the multi-scale features of insect pest images. An attention module is added to its decoder to focus on the edge of the insect pest image. RESULTS The experiments on the crop insect pest image IP102 dataset are implemented, and achieved the detection accuracy of 92.16% and IoU of 91.2%, which is 3.3% and 1.5% higher than that of MSR-RCNN, respectively. CONCLUSION The results indicate that the proposed method is effective as a new insect pest detection method. The dilated Inception can improve the accuracy of the model, and the attention module can reduce the noise generated by upsampling and accelerate model convergence. It can be concluded that the proposed method can be applied to practical crop insect pest monitoring system.
Collapse
Affiliation(s)
- Xuqi Wang
- School of Electronic Information, Xijing University, Xi'an, 710123, China
| | - Shanwen Zhang
- School of Electronic Information, Xijing University, Xi'an, 710123, China.
| | - Ting Zhang
- School of Electronic Information, Xijing University, Xi'an, 710123, China
| |
Collapse
|
4
|
Zhang C, Shao Y, Sun H, Xing L, Zhao Q, Zhang L. The WuC-Adam algorithm based on joint improvement of Warmup and cosine annealing algorithms. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:1270-1285. [PMID: 38303464 DOI: 10.3934/mbe.2024054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The Adam algorithm is a common choice for optimizing neural network models. However, its application often brings challenges, such as susceptibility to local optima, overfitting and convergence problems caused by unstable learning rate behavior. In this article, we introduce an enhanced Adam optimization algorithm that integrates Warmup and cosine annealing techniques to alleviate these challenges. By integrating preheating technology into traditional Adam algorithms, we systematically improved the learning rate during the initial training phase, effectively avoiding instability issues. In addition, we adopt a dynamic cosine annealing strategy to adaptively adjust the learning rate, improve local optimization problems and enhance the model's generalization ability. To validate the effectiveness of our proposed method, extensive experiments were conducted on various standard datasets and compared with traditional Adam and other optimization methods. Multiple comparative experiments were conducted using multiple optimization algorithms and the improved algorithm proposed in this paper on multiple datasets. On the MNIST, CIFAR10 and CIFAR100 datasets, the improved algorithm proposed in this paper achieved accuracies of 98.87%, 87.67% and 58.88%, respectively, with significant improvements compared to other algorithms. The experimental results clearly indicate that our joint enhancement of the Adam algorithm has resulted in significant improvements in model convergence speed and generalization performance. These promising results emphasize the potential of our enhanced Adam algorithm in a wide range of deep learning tasks.
Collapse
Affiliation(s)
- Can Zhang
- School of Information Engineering, Shenyang University, Shenyang 110044, China
| | - Yichuan Shao
- School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China
| | - Haijing Sun
- School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China
| | - Lei Xing
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH, United Kingdom
| | - Qian Zhao
- School of Science, Shenyang University of Technology, Shenyang 110044, China
| | - Le Zhang
- School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China
| |
Collapse
|
5
|
Mahardika T NQ, Fuadah YN, Jeong DU, Lim KM. PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN-LSTM. Diagnostics (Basel) 2023; 13:2566. [PMID: 37568929 PMCID: PMC10417316 DOI: 10.3390/diagnostics13152566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Researchers commonly use continuous noninvasive blood-pressure measurement (cNIBP) based on photoplethysmography (PPG) signals to monitor blood pressure conveniently. However, the performance of the system still needs to be improved. Accuracy and precision in blood-pressure measurements are critical factors in diagnosing and managing patients' health conditions. Therefore, we propose a convolutional long short-term memory neural network (CNN-LSTM) with grid search ability, which provides a robust blood-pressure estimation system by extracting meaningful information from PPG signals and reducing the complexity of hyperparameter optimization in the proposed model. The multiparameter intelligent monitoring for intensive care III (MIMIC III) dataset obtained PPG and arterial-blood-pressure (ABP) signals. We obtained 75,226 signal segments, with 60,180 signals allocated for training data, 12,030 signals allocated for the validation set, and 15,045 signals allocated for the test data. During training, we applied five-fold cross-validation with a grid-search method to select the best model and determine the optimal hyperparameter settings. The optimized configuration of the CNN-LSTM layers consisted of five convolutional layers, one long short-term memory (LSTM) layer, and two fully connected layers for blood-pressure estimation. This study successfully achieved good accuracy in assessing both systolic blood pressure (SBP) and diastolic blood pressure (DBP) by calculating the standard deviation (SD) and the mean absolute error (MAE), resulting in values of 7.89 ± 3.79 and 5.34 ± 2.89 mmHg, respectively. The optimal configuration of the CNN-LSTM provided satisfactory performance according to the standards set by the British Hypertension Society (BHS), the Association for the Advancement of Medical Instrumentation (AAMI), and the Institute of Electrical and Electronics Engineers (IEEE) for blood-pressure monitoring devices.
Collapse
Affiliation(s)
- Nurul Qashri Mahardika T
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
| | - Yunendah Nur Fuadah
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
- School of Electrical Engineering, Telkom University, Bandung 40257, Indonesia
| | - Da Un Jeong
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
| | - Ki Moo Lim
- Computational Medicine Lab, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea; (N.Q.M.T.); (Y.N.F.); (D.U.J.)
- Computational Medicine Lab, Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea
- Meta Heart Co., Ltd., Gumi 39177, Gyeongbuk, Republic of Korea
| |
Collapse
|