1
|
Khan MU, Sakhawat A, Rehman R, Wali AH, Ghani MU, Akram A, Javed MA, Ali Q, Yu-Ming Z, Ali D, Yu-Ming Z. Identification of novel natural compounds against CFTR p.Gly628Arg pathogenic variant. AMB Express 2024; 14:99. [PMID: 39249658 PMCID: PMC11383896 DOI: 10.1186/s13568-024-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an ion channel found in numerous epithelia and controls the flow of water and salt across the epithelium. The aim of our study to find natural compounds that can improve lung function for people with cystic fibrosis (CF) caused by the p.Gly628Arg (rs397508316) mutation of CFTR protein. The sequence of CFTR protein as a target structure was retrieved from UniProt and PDB database. The ligands that included Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and one Trikafta (R*) reference drug were screened out from PubChem database. Autodock vina software carried out docking, and binding energies between the drug and the target were included using docking-score. The following tools examined binding energy, interaction, stability, toxicity, and visualize protein-ligand complexes. The compounds having binding energies of -6.4, -5.1, -6.6, -5.1, and - 6.5 kcal/mol for Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and R*-drug, respectively with mutated CFTR (Gly628Arg) structure were chosen as the most promising ligands. The ligands bind to the mutated CFTR protein structure active sites in hydrophobic bonds, hydrogen bonds, and electrostatic interactions. According to ADMET analyses, the ligands Armepavine and Quercetin also displayed good pharmacokinetic and toxicity characteristics. An MD simulation for 200 ns was also established to ensure that Armepavine and Quercetin ligands attached to the target protein favorably and dynamically, and that protein-ligand complex stability was maintained. It is concluded that Armepavine and Quercetin have stronger capacity to inhibit the effect of mutated CFTR protein through improved trafficking and restoration of original function.
Collapse
Affiliation(s)
- Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abbas Haider Wali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Areeba Akram
- Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Zhou Yu-Ming
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi Province, P.R. China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zhou Yu-Ming
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi Province, P.R. China
| |
Collapse
|
2
|
International BR. Retracted: In Silico Structural and Functional Analyses of NLRP3 Inflammasomes to Provide Insights for Treating Neurodegenerative Diseases. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9831912. [PMID: 38230083 PMCID: PMC10791177 DOI: 10.1155/2024/9831912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
[This retracts the article DOI: 10.1155/2023/9819005.].
Collapse
|