1
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Randez-Gil F. Slt2 Is Required to Activate ER-Stress-Protective Mechanisms through TORC1 Inhibition and Hexosamine Pathway Activation. J Fungi (Basel) 2022; 8:jof8020092. [PMID: 35205847 PMCID: PMC8877190 DOI: 10.3390/jof8020092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023] Open
Abstract
Slt2, the MAPK of the cell wall integrity (CWI) pathway, connects different signaling pathways and performs different functions in the protective response of S. cerevisiae to stress. Previous work has evidenced the relation of the CWI pathway and the unfolded protein response (UPR), a transcriptional program activated upon endoplasmic reticulum (ER) stress. However, the mechanisms of crosstalk between these pathways and the targets regulated by Slt2 under ER stress remain unclear. Here, we demonstrated that ectopic expression of GFA1, the gene encoding the first enzyme in the synthesis of UDP-GlcNAc by the hexosamine biosynthetic pathway (HBP) or supplementation of the growth medium with glucosamine (GlcN), increases the tolerance of slt2 mutant cells to different ER-stress inducers. Remarkably, GlcN also alleviates the sensitivity phenotype of cells lacking IRE1 or HAC1, the main actors in controlling the UPR. The exogenous addition of GlcN reduced the abundance of glycosylated proteins and triggered autophagy. We also found that TORC1, the central stress and growth controller, is inhibited by tunicamycin exposure in cells of the wild-type strain but not in those lacking Slt2. Consistent with this, the tunicamycin-induced activation of autophagy and the increased synthesis of ATP in response to ER stress were absent by knock-out of SLT2. Altogether, our data placed Slt2 as an essential actor of the ER stress response by regulating the HBP activity and the TORC1-dependent signaling.
Collapse
Affiliation(s)
- Isabel E. Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain; (I.E.S.-A.); (G.S.); (J.A.P.)
- Correspondence:
| |
Collapse
|
2
|
Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DMC, Wassarman DR, Wu TS, Barrero D, Caggiano C, Catching A, Cavazos TB, Estes LS, Faust B, Fink EA, Goldman MA, Gomez YK, Gordon MG, Gunsalus LM, Hoppe N, Jaime-Garza M, Johnson MC, Jones MG, Kung AF, Lopez KE, Lumpe J, Martyn C, McCarthy EE, Miller-Vedam LE, Navarro EJ, Palar A, Pellegrino J, Saylor W, Stephens CA, Strickland J, Torosyan H, Wankowicz SA, Wong DR, Wong G, Redding S, Chow ED, DeGrado WF, Kampmann M. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chem Biol 2020; 15:2137-2153. [PMID: 32786289 DOI: 10.1021/acschembio.0c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.
Collapse
Affiliation(s)
- Robert W. Newberry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Taylor Arhar
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Jean Costello
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - George C. Hartoularos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Alison M. Maxwell
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Zun Zar Chi Naing
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maureen Pittman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nishith R. Reddy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel M. C. Schwarz
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Douglas R. Wassarman
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Taia S. Wu
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Daniel Barrero
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christa Caggiano
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Adam Catching
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Taylor B. Cavazos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laurel S. Estes
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Bryan Faust
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elissa A. Fink
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Miriam A. Goldman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Yessica K. Gomez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - M. Grace Gordon
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laura M. Gunsalus
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nick Hoppe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maru Jaime-Garza
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew C. Johnson
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew G. Jones
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Andrew F. Kung
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Kyle E. Lopez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jared Lumpe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Calla Martyn
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elizabeth E. McCarthy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Lakshmi E. Miller-Vedam
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Erik J. Navarro
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Aji Palar
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jenna Pellegrino
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Wren Saylor
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christina A. Stephens
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jack Strickland
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Hayarpi Torosyan
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Stephanie A. Wankowicz
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel R. Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Garrett Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
4
|
Manohar S, Jacob S, Wang J, Wiechecki KA, Koh HW, Simões V, Choi H, Vogel C, Silva GM. Polyubiquitin Chains Linked by Lysine Residue 48 (K48) Selectively Target Oxidized Proteins In Vivo. Antioxid Redox Signal 2019; 31:1133-1149. [PMID: 31482721 PMCID: PMC6798811 DOI: 10.1089/ars.2019.7826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/11/2019] [Accepted: 08/30/2019] [Indexed: 01/04/2023]
Abstract
Aims: Ubiquitin is a highly conserved protein modifier that heavily accumulates during the oxidative stress response. Here, we investigated the role of the ubiquitination system, particularly at the linkage level, in the degradation of oxidized proteins. The function of ubiquitin in the removal of oxidized proteins remains elusive because of the wide range of potential targets and different roles that polyubiquitin chains play. Therefore, we describe in detail the dynamics of the K48 ubiquitin response as the canonical signal for protein degradation. We identified ubiquitin targets and defined the relationship between protein ubiquitination and oxidation during the stress response. Results: Combining oxidized protein isolation, linkage-specific ubiquitination screens, and quantitative proteomics, we found that K48 ubiquitin accumulated at both the early and late phases of the stress response. We further showed that a fraction of oxidized proteins are conjugated with K48 ubiquitin. We identified ∼750 ubiquitinated proteins and ∼400 oxidized proteins that were modified during oxidative stress, and around half of which contain both modifications. These proteins were highly abundant and function in translation and energy metabolism. Innovation and Conclusion: Our work showed for the first time that K48 ubiquitin modifies a large fraction of oxidized proteins, demonstrating that oxidized proteins can be targeted by the ubiquitin/proteasome system. We suggest that oxidized proteins that rapidly accumulate during stress are subsequently ubiquitinated and degraded during the late phase of the response. This delay between oxidation and ubiquitination may be necessary for reprogramming protein dynamics, restoring proteostasis, and resuming cell growth.
Collapse
Affiliation(s)
- Sandhya Manohar
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Samson Jacob
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Jade Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Keira A. Wiechecki
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | - Hiromi W.L. Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vanessa Simões
- Department of Biology, Duke University, Durham, North Carolina
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York
| | | |
Collapse
|
5
|
Thomas FM, Goode KM, Rajwa B, Bieberich AA, Avramova LV, Hazbun TR, Davisson VJ. A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways. SLAS DISCOVERY 2017; 22:706-719. [PMID: 28346089 DOI: 10.1177/2472555216687525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock-dependent pathways.
Collapse
Affiliation(s)
- Fiona M Thomas
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kourtney M Goode
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Bartek Rajwa
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Andrew A Bieberich
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Larisa V Avramova
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Tony R Hazbun
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - V Jo Davisson
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
10
|
Alonso M, Burgos HI, Pannunzio V, Hughes AM, Mattoon JR, Stella CA. Brefeldin A decreases the activity of the general amino acid permease (GAP1) and the more specific systems for L-leucine uptake in Saccharomyces cerevisiae. Cell Mol Biol Lett 2006; 11:256-63. [PMID: 16847570 PMCID: PMC6275790 DOI: 10.2478/s11658-006-0020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 03/20/2006] [Indexed: 11/21/2022] Open
Abstract
Brefeldin A is a commonly used antifungal agent that reversibly blocks protein transport from the endoplasmic reticulum to the Golgi complex. In this study, we aimed to characterize L-leucine uptake in Saccharomyces cerevisiae in the presence of brefeldin A. For this purpose, we used a synthetic medium, containing L-proline and the detergent SDS, which allows the agent to permeate into the yeast cell. The results obtained with a wild type strain and a gap1 mutant indicate that BFA causes either direct or indirect modification of the transport and/or processing of L-leucine permeases. The presence of BFA affects the kinetic parameter values for L-leucine uptake and decreases not only the uptake mediated by the general system (GAP1), but also that through the specific BAP2 (S1) and/or S2 systems.
Collapse
Affiliation(s)
- Manuel Alonso
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay, 2155 5° Piso, Argentina
| | - Hilda I. Burgos
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay, 2155 5° Piso, Argentina
| | - Vanesa Pannunzio
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay, 2155 5° Piso, Argentina
| | - Andrea Monti Hughes
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay, 2155 5° Piso, Argentina
| | - James R. Mattoon
- Biotechnology Center, University of Colorado, Colorado Springs, CO USA
| | - Carlos A. Stella
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay, 2155 5° Piso, Argentina
| |
Collapse
|