1
|
Galera M, Álvarez R, Arregui M, Paniagua M, Álvarez A, González Crisostomo RA, Díazgranados A, Gutiérrez N, Calles A, Agra C. A Clear Cell Sarcoma Case: A Diagnostic and Treatment Challenge, with a Promising Response to Trabectedin. Case Rep Oncol 2023; 16:1542-1550. [PMID: 38074516 PMCID: PMC10699832 DOI: 10.1159/000534935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Clear cell sarcoma (CCS) is a rare and aggressive soft tissue sarcoma. CCS is characterized by the translocation t(12;22) (q13;q12), involving the fusion of EWSR1 and ATF1 genes, and less frequently the fusion gene EWSR1-CREB1. Usually, CCSs are considered poorly responsive to conventional chemotherapy. However, trabectedin has shown activity against translocation-related sarcomas. Furthermore, preclinical results suggest that trabectedin is a promising antitumor agent for CCS, potentially inducing melanocytic differentiation. CASE PRESENTATION We report the case of a challenging anatomopathological diagnosis in a patient with an aggressive metastatic CCS. Following the diagnosis of CCS, the patient experienced a clinical and radiological tumor response to trabectedin after four lines of treatment. CONCLUSION This is a novel report of CCS treated with trabectedin that resulted in a partial response and suggests the need for further research on trabectedin as a therapeutic option for CCS.
Collapse
Affiliation(s)
- Mar Galera
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Rosa Álvarez
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Marta Arregui
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel Paniagua
- Radiology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Ana Álvarez
- Radiation Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | | | - Adriana Díazgranados
- Anatomic Pathology Department, Hospital Universitario Vall D’Hebrón, Barcelona, Spain
| | - Natalia Gutiérrez
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Calles
- Medical Oncology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Carolina Agra
- Anatomic Pathology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
2
|
Okano A, Miyawaki S, Teranishi Y, Ohara K, Hongo H, Sakai Y, Ishigami D, Nakatomi H, Saito N. Advances in Molecular Biological and Translational Studies in World Health Organization Grades 2 and 3 Meningiomas: A Literature Review. Neurol Med Chir (Tokyo) 2022; 62:347-360. [PMID: 35871574 PMCID: PMC9464479 DOI: 10.2176/jns-nmc.2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
The treatment of World Health Organization (WHO) grades 2 and 3 meningiomas remains difficult and controversial. The pathogenesis of high-grade meningiomas was expected to be elucidated to improve treatment strategies. The molecular biology of meningiomas has been clarified in recent years. High-grade meningiomas have been linked to NF2 mutations and 22q deletion. CDKN2A/B homozygous deletion and TERT promoter mutations are independent prognostic factors for WHO grade 3 meningiomas. In addition to 22q loss, 1p, 14p, and 9q loss have been linked to high-grade meningiomas. Meningiomas enriched in copy number alterations may be biologically invasive. Furthermore, several new comprehensive classifications of meningiomas have been proposed based on these molecular biological features, including DNA methylation status. The new classifications may have implications for treatment strategies for refractory aggressive meningiomas because they provide a more accurate prognosis compared to the conventional WHO classification. Although several systemic therapies, including molecular targeted therapies, may be effective in treating refractory aggressive meningiomas, these drugs are being tested. Systemic drug therapy for meningioma is expected to be developed in the future. Thus, this review aims to discuss the distinct genomic alterations observed in WHO grade 2 and 3 meningiomas, as well as their diagnostic and therapeutic implications and systemic drug therapies for high-grade meningiomas.
Collapse
Affiliation(s)
- Atsushi Okano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Daiichiro Ishigami
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
- Department of Neurosurgery, Kyorin University
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo
| |
Collapse
|
3
|
Alvarez-Breckenridge CA, Cahill DP, Brastianos PK. Trabectedin for recurrent WHO grade 2 or 3 meningiomas-Paving the road for new opportunities. Neuro Oncol 2022; 24:768-769. [PMID: 35100424 PMCID: PMC9071327 DOI: 10.1093/neuonc/noac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Priscilla K Brastianos
- Corresponding Author: Priscilla K. Brastianos, MD, Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA ()
| |
Collapse
|
4
|
Preusser M, Silvani A, Le Rhun E, Soffietti R, Lombardi G, Sepulveda JM, Brandal P, Brazil L, Bonneville-Levard A, Lorgis V, Vauleon E, Bromberg J, Erridge S, Cameron A, Lefranc F, Clement PM, Dumont S, Sanson M, Bronnimann C, Balaná C, Thon N, Lewis J, Mair MJ, Sievers P, Furtner J, Pichler J, Bruna J, Ducray F, Reijneveld JC, Mawrin C, Bendszus M, Marosi C, Golfinopoulos V, Coens C, Gorlia T, Weller M, Sahm F, Wick W. Trabectedin for recurrent WHO grade 2 or 3 meningioma: a randomized phase 2 study of the EORTC Brain Tumor Group (EORTC-1320-BTG). Neuro Oncol 2021; 24:755-767. [PMID: 34672349 DOI: 10.1093/neuonc/noab243] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND No systemic treatment has been established for meningioma progressing after local therapies. METHODS This randomized, multicenter, open-label, phase 2 study included adult patients with recurrent WHO grade 2 or 3 meningioma. Patients were 2:1 randomly assigned to intravenous trabectedin (1.5 mg/m 2 every three weeks) or local standard of care (LOC). The primary endpoint was progression-free survival (PFS). Secondary endpoints comprised overall survival (OS), objective radiological response, safety, quality of life (QoL) assessment using the QLQ-C30 and QLQ-BN20 questionnaires, and we performed tissue-based exploratory molecular analyses. RESULTS Ninety patients were randomized (n=29 in LOC, n=61 in trabectedin arm). With 71 events, median PFS was 4.17 months in the LOC and 2.43 months in the trabectedin arm (hazard ratio [HR]=1.42; 80% CI, 1.00-2.03; p=0.294) with a PFS-6 rate of 29.1% (95% CI, 11.9%-48.8%) and 21.1% (95% CI, 11.3%-32.9%), respectively. Median OS was 10.61 months in the LOC and 11.37 months in the trabectedin arm (HR=0.98; 95% CI, 0.54-1.76; p=0.94). Grade ≥3 adverse events occurred in 44.4% patients in the LOC and 59% of patients in the trabectedin arm. Enrolled patients had impeded global QoL and overall functionality and high fatigue before initiation of systemic therapy. DNA methylation class, performance status, presence of a relevant co-morbidity, steroid use, and right hemisphere involvement at baseline were independently associated with OS. CONCLUSIONS Trabectedin did not improve PFS and OS and was associated with higher toxicity than LOC treatment in patients with non-benign meningioma. Tumour DNA methylation class is an independent prognostic factor for OS.
Collapse
Affiliation(s)
- Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Antonio Silvani
- Department of Neuro-oncology, IRCCS Fondazione Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133 Milan, Italy
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, France; Inserm, U-1192, F-59000 Lille, France; CHU Lille, General and Stereotaxic Neurosurgery service, F-59000 Lille, France; Oscar Lambret Center, Medical Oncology Department, F-59000 Lille
| | - Riccardo Soffietti
- Dept. Neuro-Oncology, University and City of Health and Science Hospital, Via Cherasco 15, 10126 Turin, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV- IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Juan Manuel Sepulveda
- Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba s/n, 28041 Madrid, Spain
| | - Petter Brandal
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, P.O.Box 4950 Nydalen, 0424 Oslo, Norway
| | - Lucy Brazil
- St Thomas' Hospital, Westminster Bridge Rd, London SE1 7EH, United Kingdom
| | | | - Veronique Lorgis
- Department of Medical Oncology, Centre Georges François Leclerc, 1 Rue du Professeur Marion, 21000 Dijon, France
| | - Elodie Vauleon
- Department of Medical Oncology, Centre Eugene Marquis, Avenue de la Bataille Flandres Dunkerque, 25042 Rennes, France
| | - Jacoline Bromberg
- Department of Neuro-Oncology, Erasmus MC University Medical Center Cancer Center, Doctor Molewaterplein 40, 3015 Rotterdam, The Netherlands
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Crewe Rd S, Edinburgh EH4 2XU, United Kingdom
| | - Alison Cameron
- Bristol Cancer Institute, University Hospitals Bristol, Marlborough St, Bristol BS1 3NU, United Kingdom
| | - Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme; Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Paul M Clement
- Department of Oncology, KU Leuven and Department of General Medical Oncology, UZ Leuven, Leuven Cancer Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Sarah Dumont
- Institut Gustave-Roussy, Université Paris-Saclay, Medical Oncology Department, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, 47-83 Boulevard del l'Hôpital, 75013, Paris, France
| | - Charlotte Bronnimann
- Department of Medical Oncology, Bordeaux University Hospital-CHU, Bordeaux, France, University of Bordeaux, Place Amélie Raba Léon, 33000 Bordeaux, France
| | - Carmen Balaná
- Department of Medical Oncology, Catalan Institute of Oncology, Carretera Canyet sn, 08916 Badalona , Barcelona, Spain
| | - Niklas Thon
- Department of Neurosurgery, Faculty of Medicine and University Hospital, University of Munich LMU), Marchioninistraße 15, 81377 Munich, Germany
| | - Joanne Lewis
- Freeman Hospital, Freeman Rd, High Heaton, Newcastle NE7 7DN, United Kingdom
| | - Maximilian J Mair
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research DKTK), German Cancer Research Center DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Neuromed Campus, Kepler University Hospital, Johannes Kepler University of Linz, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge-Institut Català D'Oncologia L'Hospitalet, Avinguda de la Granvia de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francois Ducray
- Unit of Neuro-Oncology, Hospices Civils de Lyon and Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, Claude Bernard University, 28 Rue Laennec, 69008 Lyon, France
| | - Jaap C Reijneveld
- Brain Tumor Center, Cancer Center Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands and Stichting Epilepsie Instellingen Nederland, Achterweg 3, 2103 SW Heemstede, Netherlands
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke-University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Christine Marosi
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Vassilis Golfinopoulos
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Corneel Coens
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Thierry Gorlia
- European Organisation for Research and Treatment of Cancer EORTCHeadquarter, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research DKTK), German Cancer Research Center DKFZ), Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Medical Center, Clinical Cooperation Unit, Neurooncology, German Cancer Research Center, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
Trabectedin (ET743, Yondelis®, manufactured by Baxter Oncology GmbH, Halle/Westfalen, Germany, for Janssen Products, LP, Horsham, PA), derived from the marine ascidian, Ecteinascidia turbinata, is a natural alkaloid with multiple complex mechanisms of action. On 23 October 2015, 15 years after the results of the first Phase 1 clinical trial using trabectedin for chemotherapy-resistant solid malignancies was reported, and 8 years after its approval in Europe, the United States Food and Drug Administration (USFDA) finally approved trabectedin for the treatment of unresectable or metastatic liposarcoma or leiomyosarcoma that has failed a prior anthracycline-containing regimen. Approval was based on the results of a pivotal Phase 3 trial involving a 2:1 randomization of 518 patients (who were further stratified by soft tissue sarcoma subtype), in which a significant improvement in progression-free survival was reported in the trabectedin-treated group vs. the dacarbazine-treated group (p < 0.001). In this trial, the most common adverse reactions were nausea, fatigue, vomiting, constipation, anorexia, diarrhea, peripheral edema, dyspnea, and headache, while the most serious were neutropenic sepsis, rhabdomyolysis, cardiomyopathy, hepatotoxicity, and extravasation leading to tissue necrosis. The most common grade 3–4 adverse events were laboratory abnormalities of myelosuppression in both arms and transient transaminitis in the trabectedin arm. In a recent Phase 2 trial, trabectedin had a similar outcome as doxorubicin when given as a single agent in the first-line setting. Studies are also being conducted to expand the use of trabectedin not only as a first-line cancer drug, but also for a number of other clinical indications, for example, in the case of mesenchymal chondrosarcoma, for which trabectedin has been reported to be exceptionally active. The possibility of combining trabectedin with targeted therapies, immune checkpoint inhibitors or virotherapy would also be an interesting concept. In short, trabectedin is an old new drug with proven potential to impact the lives of patients with soft tissue sarcoma and other solid malignancies. Funding: Sarcoma Oncology Center, Santa Monica, CA 90405.
Collapse
|
6
|
Angarita FA, Cannell AJ, Abdul Razak AR, Dickson BC, Blackstein ME. Trabectedin for inoperable or recurrent soft tissue sarcoma in adult patients: a retrospective cohort study. BMC Cancer 2016; 16:30. [PMID: 26786213 PMCID: PMC4719676 DOI: 10.1186/s12885-016-2054-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/06/2016] [Indexed: 01/21/2023] Open
Abstract
Background Trabectedin is an antineoplastic agent used for patients with soft tissue sarcoma (STS) who fail standard-of-care treatment. Real-world data of its performance is scarce. This study evaluates the safety and effectiveness of trabectedin for patients with advanced STS who were treated at a high-volume sarcoma center. Methods A retrospective chart review was performed on 77 patients treated with trabectedin (24 h infusion q3w) between 01/2005 and 05/2014. Data regarding safety, objective radiological response, progression-free and overall survival were analyzed. Results Median age at treatment onset was 52y [interquartile range (IQR): 45-61y]. Tumors included leiomyosarcoma (41.6 %), liposarcoma (18.2 %), and synovial sarcoma (13 %). Trabectedin was provided as ≥ third-line chemotherapy in 71.4 %. Median number of cycles was 2 (range: 1–17). Dose reduction and treatment delays occurred in 19.5 and 40.3 %, respectively. Toxicities occurred in 78 %, primarily for neutropenia or elevated liver enzymes. Two patients died secondary to trabectedin-induced rhabdomyolysis. Treatment was discontinued because of disease progression (84.7 %), toxicity (10 %), and patient preference (5 %). Partial response or stable disease occurred in 14.1 and 33.8 %, respectively, while 52.1 % developed progressive disease. Median progression-free survival was 1.3 m (IQR: 0.7–3.5 m) and was significantly higher in patients lacking severe toxicities or progressive disease. Median overall survival was 6.7 m (IQR: 2.3–12.7 m) and was significantly higher in patients with leiomyosarcoma or liposarcoma relative to other histologies. Conclusions Trabectedin has an acceptable safety profile as an anti-tumor agent. Our data further suggest there may be some benefit in using trabectedin particularly in patients with leiomyo- or liposarcoma who failed standard-of-care agents.
Collapse
Affiliation(s)
- Fernando A Angarita
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Amanda J Cannell
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Albiruni R Abdul Razak
- Department of Medical Oncology, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Brendan C Dickson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Martin E Blackstein
- Department of Medical Oncology, Mount Sinai Hospital, Toronto, ON, Canada. .,Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Cost effectiveness of first-line treatment with doxorubicin/ifosfamide compared to trabectedin monotherapy in the management of advanced soft tissue sarcoma in Italy, Spain, and sweden. Sarcoma 2013; 2013:725305. [PMID: 24302852 PMCID: PMC3835776 DOI: 10.1155/2013/725305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/20/2013] [Indexed: 11/23/2022] Open
Abstract
Background. Doxorubicin/ifosfamide is a first-line systemic chemotherapy for the majority of advanced soft tissue sarcoma (ASTS) subtypes. Trabectedin is indicated for the treatment of ASTS after failure of anthracyclines and/or ifosfamide; however it is being increasingly used off-label as a first-line treatment. This study estimated the cost effectiveness of these two treatments in the first-line management of ASTS in Italy, Spain, and Sweden. Methods. A Markov model was constructed to estimate the cost effectiveness of doxorubicin/ifosfamide compared to trabectedin monotherapy, defined as the cost per QALY gained, in each country. Results. First-line treatment with doxorubicin/ifosfamide resulted in lower two-year healthcare costs and more QALYs than first-line treatment with trabectedin monotherapy in all three countries. Probabilistic sensitivity analysis showed that at a cost per QALY threshold of €35,000, >90% of a cohort would be cost effectively treated with doxorubicin/ifosfamide compared to trabectedin monotherapy in all three countries. Conclusion. Within the model's limitations, first-line treatment of patients with ASTS with doxorubicin/ifosfamide instead of trabectedin monotherapy affords a cost-effective use of publicly funded healthcare resources in Italy, Spain, and Sweden and is therefore the preferred treatment in all three countries. These findings support the recommendation that trabectedin should remain a second-line treatment.
Collapse
|
8
|
Movva S. Emerging therapies for sarcoma. Curr Probl Cancer 2013; 37:87-101. [PMID: 23719333 DOI: 10.1016/j.currproblcancer.2013.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
STS are uncommon tumors of the connective tissues. The OS of patients with advanced sarcomas has improved in the last 20 years, but remains under 2 years. Drug discovery for this disease has been complicated by the fact that there are many different subtypes that comprise STS. In fact, emerging data suggest that each of these subtypes may represent a different entity, with a unique molecular profile and responsiveness to therapy. Testing of new agents and determining predictors for response in this heterogeneous disease is therefore of utmost importance.
Collapse
Affiliation(s)
- Sujana Movva
- Department of Medical Oncology, Fox Chase Cancer Center, Temple Health, USA
| |
Collapse
|
9
|
Utility values for advanced soft tissue sarcoma health States from the general public in the United kingdom. Sarcoma 2013; 2013:863056. [PMID: 23576896 PMCID: PMC3613051 DOI: 10.1155/2013/863056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022] Open
Abstract
Soft tissue sarcomas are a rare type of cancer generally treated with palliative chemotherapy when in the advanced stage. There is a lack of published health utility data for locally advanced "inoperable"/metastatic disease (ASTS), essential for calculating the cost-effectiveness of current and future treatments. This study estimated time trade-off (TTO) and standard gamble (SG) preference values associated with four ASTS health states (progressive disease, stable disease, partial response, complete response) among members of the general public in the UK (n = 207). The four health states were associated with decreases in preference values from full health. Complete response was the most preferred health state (mean utility of 0.60 using TTO). The second most preferred health state was partial response followed by stable disease (mean utilities were 0.51 and 0.43, respectively, using TTO). The least preferred health state was progressive disease (mean utility of 0.30 using TTO). The utility value for each state was significantly different from one another (P < 0.001). This study demonstrated and quantified the impact that different treatment responses may have on the health-related quality of life of patients with ASTS.
Collapse
|
10
|
Gastaud L, Saâda-Bouzid E, Morvan VL, Pourquier P, Ianessi A, Thariat J, Italiano A, Thyss A. Major Efficacy of Trabectedin in 2 Metastatic Osteosarcoma Patients with Wild-Type Asp1104 ERCC5 Tumor Status. ACTA ACUST UNITED AC 2013; 36:670-3. [DOI: 10.1159/000355664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Somaiah N, von Mehren M. New drugs and combinations for the treatment of soft-tissue sarcoma: a review. Cancer Manag Res 2012; 4:397-411. [PMID: 23226072 PMCID: PMC3514064 DOI: 10.2147/cmar.s23257] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sarcomas are a heterogeneous group of solid tumors arising from either soft tissues or bone, accounting for approximately 1% of all cancers in adults. Management of these diseases has changed little over the past 10 years, with the exception of treatment of gastrointestinal stromal tumors. Reasons for this stagnation include multiple histologies commonly grouped together in clinical trials limiting the understanding of benefit of treatment and limited investigation of molecular targeted therapies. More recently, advances in molecular pathogenesis, the advent of novel and targeted therapeutics, and increasing collaborations between sarcoma investigators has helped move the field forward in the right direction. Here, we review the recent data on novel agents tested for the management of adult soft-tissue sarcomas, excluding gastrointestinal stromal tumors.
Collapse
Affiliation(s)
- Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margaret von Mehren
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
12
|
Sabatino MA, Marabese M, Ganzinelli M, Caiola E, Geroni C, Broggini M. Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol Cancer 2010; 9:259. [PMID: 20868484 PMCID: PMC2955619 DOI: 10.1186/1476-4598-9-259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/24/2010] [Indexed: 12/31/2022] Open
Abstract
Background Drug resistance is one of the major obstacles limiting the activity of anticancer agents. Activation of DNA repair mechanism often accounts for increase resistance to cancer chemotherapy. Results We present evidence that nemorubicin, a doxorubicin derivative currently in clinical evaluation, acts through a mechanism of action different from classical anthracyclines, requiring an intact nucleotide excision repair (NER) system to exert its activity. Cells made resistant to nemorubicin show increased sensitivity to UV damage. We have analysed the mechanism of resistance and discovered a previously unknown mechanism resulting from methylation-dependent silencing of the XPG gene. Restoration of NER activity through XPG gene transfer or treatment with demethylating agents restored sensitivity to nemorubicin. Furthermore, we found that a significant proportion of ovarian tumors present methylation of the XPG promoter. Conclusions Methylation of a NER gene, as described here, is a completely new mechanism of drug resistance and this is the first evidence that XPG gene expression can be influenced by an epigenetic mechanism. The reported methylation of XPG gene could be an important determinant of the response to platinum based therapy. In addition, the mechanism of resistance reported opens up the possibility of reverting the resistant phenotype using combinations with demethylating agents, molecules already employed in the clinical setting.
Collapse
|
13
|
Vincenzi B, Napolitano A, Frezza AM, Schiavon G, Santini D, Tonini G. Wide-spectrum characterization of trabectedin: biology, clinical activity and future perspectives. Pharmacogenomics 2010; 11:865-78. [DOI: 10.2217/pgs.10.69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ecteinascidin-743 (trabectedin, Yondelis®; PharmaMar, Madrid, Spain), a 25-year-old antineoplastic alkylating agent, has recently shown unexpected and interesting mechanisms of action. Trabectedin causes perturbation in the transcription of inducible genes (e.g., the multidrug resistance gene MDR1) and interaction with DNA repair mechanisms (e.g., the nucleotide excision repair pathway) owing to drug-related DNA double strand breaks and adduct formation. Trabectedin was the first antineoplastic agent from a marine source (namely, the Caribbean tunicate Ecteinascidia turbinata) to receive marketing authorization. This article summarizes the mechanisms of action, the complex metabolism, the main toxicities, the preclinical and clinical evidences of its antineoplastic effects in different types of cancer and, finally, the future perspectives of this promising drug.
Collapse
Affiliation(s)
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Maria Frezza
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Gaia Schiavon
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Daniele Santini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Giuseppe Tonini
- University Campus Bio-Medico, Medical Oncology, Via Alvaro del Portillo 200, 00128 Rome, Italy
| |
Collapse
|
14
|
Efficacy of trabectedin for advanced sarcomas in clinical trials versus compassionate use programs: analysis of 92 patients treated in a single institution. Anticancer Drugs 2010; 21:113-9. [PMID: 19887935 DOI: 10.1097/cad.0b013e328333057b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Trabectedin was recently approved for patients failing doxorubicin, the standard treatment for advanced/metastatic sarcoma. This retrospective study aimed to compare trabectedin efficacy between compassionate use in unselected patients and clinical trials. From May 1999 to January 2006, 92 patients were treated at the Centre Léon Bérard, either in phase II studies or on a named patient compassionate basis. All cases were retrospectively analyzed to assess trabectedin efficacy in terms of response, progression-free, and overall survival.The objective response rate was 10% (N=9): 4% (N=2) for patients treated in compassionate use program and 16% (N=7) for those in clinical trials (P=0.18); 26 (28%) patients had stable disease for at least 6 months, 11 (23%) in the compassionate group and 15 (33%) in clinical trials. Median progression-free and overall survivals were, respectively, 2.2 [95% confidence interval (CI): 1.9-3.6] and 8.9 (95% CI: 6.4-14.2) months for all patients, 2.3 (95% CI: 1.9-4.3) and 10.4 (95% CI: 6.9-24.2) months for patients in clinical trials and 1.8 (95% CI: 1.4-3.4) and 6.4 (95% CI: 3.3-14.2) months for patients under compassionate treatment. In this retrospective analysis, the reported grade 3-4 toxicities were increased transaminase (34 patients, 37%) and neutropenia (38 patients; 42%). Higher efficacy was observed in phase II studies than with compassionate treatment, but no significant difference remained after adjustment in multivariate analysis for performance status, a well-established prognosis factor. The safety and tolerability of trabectedin shown in clinical trials is confirmed for patients in real-life situation treated in compassionate use programs, but its benefit is higher for patients with performance status 0-1.
Collapse
|
15
|
Christinat A, Leyvraz S. Role of trabectedin in the treatment of soft tissue sarcoma. Onco Targets Ther 2009; 2:105-13. [PMID: 20616899 PMCID: PMC2886331 DOI: 10.2147/ott.s4454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Indexed: 01/17/2023] Open
Abstract
Interest in marine natural products has allowed the discovery of new drugs and trabectedin (ET-743, Yondelis), derived from the marine tunicate Ecteinascidia turbinata, was approved for clinical use in 2007. It binds to the DNA minor groove leading to interferences with the intracellular transcription pathways and DNA-repair proteins. In vitro antitumor activity was demonstrated against various cancer cell lines and soft tissue sarcoma cell lines. In phase I studies tumor responses were observed also in osteosarcomas and different soft tissue sarcoma subtypes. The most common toxicities were myelosuppression and transient elevation of liver function tests, which could be reduced by dexamethasone premedication. The efficacy of trabectedin was established in three phase II studies where it was administered at 1.5 mg/m2 as a 24 h intravenous infusion repeated every three weeks, in previously treated patients. The objective response rate was 3.7%–8.3% and the tumor control rate (which included complete response, partial response and stable disease) was obtained in half of patients for a median overall survival reaching 12 months. In nonpretreated patients the overall response rate was 17%. Twenty-four percent of patients were without progression at six months. The median overall survival was almost 16 months with 72% surviving at one year. Predictive factors of response are being explored to identify patients who are most likely to respond to trabectedin. Combination with other agents are currently studied with promising results. In summary trabectedin is an active new chemotherapeutic agents that has demonstrated its role in the armamentarium of treatments for patients with sarcomas.
Collapse
Affiliation(s)
- Alexandre Christinat
- Centre Pluridisciplinaire d'Oncologie, University Hospital, Lausanne, Switzerland
| | | |
Collapse
|
16
|
Mayer AMS, Gustafson KR. Marine pharmacology in 2005-2006: antitumour and cytotoxic compounds. Eur J Cancer 2008; 44:2357-87. [PMID: 18701274 DOI: 10.1016/j.ejca.2008.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/23/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines were reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom (UK) and the United States of America (USA). Finally, this 2005-2006 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | | |
Collapse
|
17
|
|
18
|
Cassier PA, Dufresne A, Blay JY, Fayette J. Trabectedin and its potential in the treatment of soft tissue sarcoma. Ther Clin Risk Manag 2008; 4:109-16. [PMID: 18728699 PMCID: PMC2503645 DOI: 10.2147/tcrm.s1174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Trabectedin is a new marine-derived compound that binds the DNA minor groove and interacts with proteins of the DNA repair machinery. Phase I trials have established the standard regimen as 1500 mug/m(2) 24-hour continuous infusion repeated every 3 weeks. Several phase II trials have shown response in 5%-10% of unselected patients with soft tissue sarcoma failing prior chemotherapy and disease stabilisation in 30%-40%. Furthermore, prolonged disease control has been described in 15%-20% of patients. Toxicities are mainly haematological and hepatic with grade 3-4 neutropenia and thrombocytopenia observed in approximately 50% and 20% of patients respectively, and grade 3-4 elevation of liver enzymes observed in 35%-50% of patients treated with trabectedin. Current research focuses on the identification of predictive factors for patients with soft tissue sarcoma treated with trabectedin.
Collapse
Affiliation(s)
- Philippe A Cassier
- Unité de Jour d’Oncologie Médicale Multidisciplinaire, Hôpital Edouard HerriotLyon, France
| | - Armelle Dufresne
- Unité de Jour d’Oncologie Médicale Multidisciplinaire, Hôpital Edouard HerriotLyon, France
| | - Jean-Yves Blay
- Unité de Jour d’Oncologie Médicale Multidisciplinaire, Hôpital Edouard HerriotLyon, France
- Département d’Oncologie Médicale, Centre Léon BérardLyon, France
- Unité INSERM 590, Equipe Cytokine et Cancer, Centre Léon BérardLyon, France
| | - Jérôme Fayette
- Département d’Oncologie Médicale, Centre Léon BérardLyon, France
- Unité INSERM 590, Equipe Cytokine et Cancer, Centre Léon BérardLyon, France
| |
Collapse
|
19
|
Ebeling P, Eisele L, Schuett P, Bauer S, Schuette J, Moritz T, Seeber S, Flasshove M. Docetaxel and Gemcitabine in the Treatment of Soft Tissue Sarcoma – A Single-Center Experience. ACTA ACUST UNITED AC 2008; 31:11-6. [DOI: 10.1159/000111756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Abstract
Objective. In the era of oral molecular kinase inhibitors, cytotoxic chemotherapy agents are somewhat overlooked, but remain the backbone of treatment for most cancers. Patients with non-gastrointestinal stromal tumor sarcomas, such as leiomyosarcoma, liposarcoma, and undifferentiated high-grade pleomorphic sarcoma (formerly called malignant fibrous histiocytoma), have received doxorubicin and ifosfamide as the backbone of their treatment for over 15 years or more. The goal of this article is to review the data that have led to the use of gemcitabine and docetaxel as a useful combination for patients with metastatic sarcomas, and to comment on possible synergy of the combination. Methods and results. The literature regarding the use of gemcitabine, docetaxel, or both, is reviewed, with emphasis on patients with metastatic sarcoma. Results. Activity of gemcitabine and docetaxel is observed in leiomyosarcoma and undifferentiated high-grade pleomorphic sarcoma. There is apparent schedule dependence of the combination in other cancers; it is unclear if schedule matters in patients with sarcomas. The dose and schedule of gemcitabine and docetaxel examined in phase II studies are probably too high for routine practice. Conclusions. The combination of gemcitabine and docetaxel is an effective option for patients with metastatic sarcoma, increasing the armamentarium for the practicing oncologist in treating this heterogeneous group of diseases. Given the low response rate to docetaxel as a single agent, it is likely that there is true clinical synergy of the combination. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Robert G Maki
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, New York 10021-6007, USA.
| |
Collapse
|
21
|
|