Ou JM, Zhang XP, Wu CJ, Wu DJ, Yan P. Effects of dexamethasone and Salvia miltiorrhiza on multiple organs in rats with severe acute pancreatitis.
J Zhejiang Univ Sci B 2013;
13:919-31. [PMID:
23125085 DOI:
10.1631/jzus.b1100351]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE
To investigate the protective effects and mechanisms of action of dexamethasone and Salvia miltiorrhiza on multiple organs in rats with severe acute pancreatitis (SAP).
METHODS
The rats were divided into sham-operated, model control, dexamethasone treated, and Salvia miltiorrhiza treated groups. At 3, 6, and 12 h after operation, the mortality rate of different groups, pathological changes, Bcl-2-associated X protein (Bax) and nuclear factor-κB (NF-κB) protein expression levels in multiple organs (the pancreas, liver, kidneys, and lungs), toll-like receptor 4 (TLR-4) protein levels (only in the liver), intercellular adhesion molecule 1 (ICAM-1) protein levels (only in the lung), and terminal deoxynucleotidy transferase mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) staining expression levels, as well as the serum contents of amylase, glutamate-pyruvate transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), and creatinine (CREA) were observed.
RESULTS
The mortality rate of the dexamethasone treated group was significantly lower than that of the model control group (P<0.05). The pathological changes in multiple organs in the two treated groups were relieved to different degrees (P<0.05 and P<0.01, respectively), the expression levels of Bax and NF-κB proteins, and apoptotic indexes of multiple organs were reduced (P<0.05 and P<0.01, respectively). The contents of amylase, GPT, GOT, BUN, and CREA in the two treated groups were significantly lower than those in model control groups (P<0.05 and P<0.01, respectively). The expression level of ICAM-1 protein in the lungs (at 3 and 12 h) in the dexamethasone treated group was significantly lower than that in the Salvia miltiorrhiza treated group (P<0.05). The serum contents of CREA (at 12 h) and BUN (at 6 h) of the Salvia miltiorrhiza treated group were significantly lower than those in the dexamethasone treated group (P<0.05).
CONCLUSIONS
Both dexamethasone and Salvia miltiorrhiza can reduce the inflammatory reaction, regulate apoptosis, and thus protect multiple organs of rats with SAP.
Collapse