1
|
Lu ZY, Fu JJ, Ma YL, Jin RC, Fan NS. Response of anammox granules to the simultaneous exposure to macrolide and aminoglycoside antibiotics: Linking performance to mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112267. [PMID: 33667820 DOI: 10.1016/j.jenvman.2021.112267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic pollution is becoming increasingly severe due to its extensive use. The potential application of the anaerobic ammonium oxidation (anammox) process in the treatment of wastewater containing antibiotics has attracted much attention. As common antibiotics, spiramycin (SPM) and streptomycin (STM) are widely used to treat human and animal diseases. However, their combined effects on the anammox process remain unknown. Therefore, this study systematically evaluated the response of the anammox process to both antibiotics. The half maximal inhibitory concentrations of SPM and STM were determined. The continuous-flow anammox system could adapt to SPM and STM at low concentrations, while antibiotics at high concentrations exhibited inhibitory effects. When the concentrations reached 5 mg L-1 SPM and 50 mg L-1 STM, the nitrogen removal efficiency dramatically decreased and then rapidly recovered within 8 days. Correspondingly, the abundances of dominant bacteria and genes also changed with antibiotic concentrations. In general, the anammox process showed a stable performance and a high resistance to SPM and STM, suggesting that acclimatization by elevating the concentrations was beneficial for the anammox process to obtain resistance to different antibiotics with high concentrations. This study provides guidance for the stable operation of anammox-based biological treatment of antibiotics containing wastewater.
Collapse
Affiliation(s)
- Zheng-Yang Lu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jin-Jin Fu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Long Ma
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nian-Si Fan
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Quinn TA, Kohl P. Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:110-22. [PMID: 27208698 PMCID: PMC5067302 DOI: 10.1016/j.pbiomolbio.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
Abstract
Cardiac auto-regulation involves integrated regulatory loops linking electrics and mechanics in the heart. Whereas mechanical activity is usually seen as 'the endpoint' of cardiac auto-regulation, it is important to appreciate that the heart would not function without feed-back from the mechanical environment to cardiac electrical (mechano-electric coupling, MEC) and mechanical (mechano-mechanical coupling, MMC) activity. MEC and MMC contribute to beat-by-beat adaption of cardiac output to physiological demand, and they are involved in various pathological settings, potentially aggravating cardiac dysfunction. Experimental and computational studies using rabbit as a model species have been integral to the development of our current understanding of MEC and MMC. In this paper we review this work, focusing on physiological and pathological implications for cardiac function.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
4
|
Cao JX, Fu L, Gao QP, Xie RS, Qu F. Streptomycin inhibits electrophysiological changes induced by stretching of chronically infarcted rat hearts. J Zhejiang Univ Sci B 2014; 15:515-21. [PMID: 24903988 DOI: 10.1631/jzus.b1300297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To investigate stretch-induced electrophysiological changes in chronically infarcted hearts and the effect of streptomycin (SM) on these changes in vivo. METHODS Sixty Wistar rats were divided randomly into four groups: a control group (n=15), an SM group (n=15), a myocardial infarction (MI) group (n=15), and an MI+SM group (n=15). Chronic MI was obtained by ligating the left anterior descending branch (LAD) of rat hearts for eight weeks. The in vivo blockade of stretch-activated ion channels (SACs) was achieved by intramuscular injection of SM (180 mg/(kg∙d)) for seven days after operation. The hearts were stretched for 5 s by occlusion of the aortic arch. Suction electrodes were placed on the anterior wall of left ventricle to record the monophasic action potential (MAP). The effect of stretching was examined by assessing the 90% monophasic action potential duration (MAPD90), premature ventricular beats (PVBs), and ventricular tachycardia (VT). RESULTS The MAPD90 decreased during stretching in both the control (from (50.27±5.61) ms to (46.27±4.51) ms, P<0.05) and MI groups (from (65.47±6.38) ms to (57.47±5.76 ms), P<0.01). SM inhibited the decrease in MAPD90 during inflation ((46.27±4.51) ms vs. (49.53±3.52) ms, P<0.05 in normal hearts; (57.47±5.76) ms vs. (61.87±5.33) ms, P<0.05 in MI hearts). The occurrence of PVBs and VT in the MI group increased compared with that in the control group (PVB: 7.93±1.66 vs. 1.80±0.86, P<0.01; VT: 7 vs. 1, P<0.05). SM decreased the occurrence of PVBs in both normal and MI hearts (0.93±0.59 vs. 1.80±0.86 in normal hearts, P<0.05; 5.40±1.18 vs. 7.93±1.66 in MI hearts, P<0.01). CONCLUSIONS Stretch-induced MAPD90 changes and arrhythmias were observed in chronically infarcted myocardium. The use of SM in vivo decreased the incidence of PVBs but not of VT. This suggests that SACs may be involved in mechanoelectric feedback (MEF), but that there might be other mechanisms involved in causing VT in chronic MI.
Collapse
Affiliation(s)
- Jun-xian Cao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Chinese Medicine, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | | | | | | |
Collapse
|
5
|
The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electrophysiol 2013; 39:25-35. [DOI: 10.1007/s10840-013-9852-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
6
|
Barrabés JA, Figueras J, Candell-Riera J, Agulló L, Inserte J, Garcia-Dorado D. La distensión de la región isquémica predice una mayor inducibilidad de fibrilación ventricular tras la oclusión coronaria en el modelo porcino. Rev Esp Cardiol 2013. [DOI: 10.1016/j.recesp.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Distension of the ischemic region predicts increased ventricular fibrillation inducibility following coronary occlusion in swine. ACTA ACUST UNITED AC 2012; 66:171-6. [PMID: 24775450 DOI: 10.1016/j.rec.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/01/2012] [Indexed: 11/21/2022]
Abstract
INTRODUCTION AND OBJECTIVES Distension of the ischemic region has been related to an increased incidence of spontaneous ventricular arrhythmias following coronary occlusion. This study analyzed whether regional ischemic distension predicts increased ventricular fibrillation inducibility after coronary occlusion in swine. METHODS In 18 anesthetized, open-chest pigs, the left anterior descending coronary artery was ligated for 60 min. Myocardial segment length in the ischemic region was monitored by means of ultrasonic crystals. Programmed stimulation was applied at baseline and then continuously between 10 and 60 min after coronary occlusion. RESULTS Coronary occlusion induced a rapid increase in end-diastolic length in the ischemic region, which reached 109.4% (0.9%) of baseline values 10 min after occlusion (P<.001). On average, 6.6 (0.5) stimulation protocols were completed and 5.4 (0.6) ventricular fibrillation episodes induced between 10 and 60 min of coronary occlusion. Neither baseline serum potassium levels nor the size of the ischemic region were significantly related to ventricular fibrillation inducibility. In contrast, the increase in end-diastolic length 10 min after coronary occlusion was associated directly (r=0.67; P=.002) with the number of induced ventricular fibrillation episodes and inversely (r=-0.55; P=.018) with the number of extrastimuli needed for ventricular fibrillation induction. CONCLUSIONS Regional ischemic expansion predicts increased ventricular fibrillation inducibility following coronary occlusion. These results highlight the potential influence of mechanical factors, acting not only on the triggers but also on the substrate, in the genesis of malignant ventricular arrhythmias during acute ischemia.
Collapse
|
8
|
Brines L, Such-Miquel L, Gallego D, Trapero I, del Canto I, Zarzoso M, Soler C, Pelechano F, Cánoves J, Alberola A, Such L, Chorro FJ. Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiol (Oxf) 2012; 206:29-41. [PMID: 22497862 DOI: 10.1111/j.1748-1716.2012.02441.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/16/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
Abstract
AIM Myocardial stretching is an arrhythmogenic factor. Optical techniques and mechanical uncouplers are used to study the mechanoelectric feedback. The aim of this study is to determine whether the mechanical uncouplers 2,3-butanedione monoxime and Blebbistatin hinder or modify the electrophysiological effects of acute mechanical stretch. METHODS The ventricular fibrillation (VF) modifications induced by acute mechanical stretch were studied in 27 Langendorff-perfused rabbit hearts using epicardial multiple electrodes and mapping techniques under control conditions (n = 9) and during the perfusion of 2,3-butanedione monoxime (15 mM) (n = 9) or Blebbistatin (10 μm) (n = 9). RESULTS In the control series, myocardial stretch increased the complexity of the activation maps and the dominant frequency (DF) of VF from 13.1 ± 2.0 Hz to 19.1 ± 3.1 Hz (P < 0.001, 46% increment). At baseline, the activation maps showed less complexity in both the 2,3-butanedione monoxime and Blebbistatin series, and the DF was lower in the 2,3-butanedione monoxime series (11.4 ± 1.2 Hz; P < 0.05). The accelerating effect of mechanical stretch was abolished under 2,3-butanedione monoxime (maximum DF = 11.7 ± 2.4 Hz, 5% increment, ns vs baseline, P < 0.0001 vs. control series) and reduced under Blebbistatin (maximum DF = 12.9 ± 0.7 Hz, 8% increment, P < 0.01 vs. baseline, P < 0.0001 vs. control series). The variations in complexity of the activation maps under stretch were not significant in the 2,3-butanedione monoxime series and were significantly attenuated under Blebbistatin. CONCLUSION The accelerating effect and increased complexity of myocardial activation during VF induced by acute mechanical stretch are abolished under the action of 2,3-butanedione monoxime and reduced under the action of Blebbistatin.
Collapse
Affiliation(s)
- L. Brines
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - L. Such-Miquel
- Department of Physiotherapy; Valencia University, Estudi General; Valencia; Spain
| | - D. Gallego
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - I. Trapero
- Department of Infirmary; Valencia University, Estudi General; Valencia; Spain
| | - I. del Canto
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - M. Zarzoso
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - C. Soler
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - F. Pelechano
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - J. Cánoves
- Service of Cardiology; Valencia University Clinic Hospital; INCLIVA, Valencia; Spain
| | - A. Alberola
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - L. Such
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | | |
Collapse
|
9
|
Chorro FJ, Trapero I, Such-Miquel L, Pelechano F, Mainar L, Cánoves J, Tormos Á, Alberola A, Hove-Madsen L, Cinca J, Such L. Pharmacological modifications of the stretch-induced effects on ventricular fibrillation in perfused rabbit hearts. Am J Physiol Heart Circ Physiol 2009; 297:H1860-9. [DOI: 10.1152/ajpheart.00144.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stretch induces modifications in myocardial electrical and mechanical activity. Besides the effects of substances that block the stretch-activated channels, other substances could modulate the effects of stretch through different mechanisms that affect Ca2+ handling by myocytes. Thirty-six Langendorff-perfused rabbit hearts were used to analyze the effects of the Na+/Ca2+ exchanger blocker KB-R7943, propranolol, and the adenosine A2 receptor antagonist SCH-58261 on the acceleration of ventricular fibrillation (VF) produced by acute myocardial stretching. VF recordings were obtained with two epicardial multiple electrodes before, during, and after local stretching in four experimental series: control ( n = 9), KB-R7943 (1 μM, n = 9), propranolol (1 μM, n = 9), and SCH-58261 (1 μM, n = 9). Both the Na+/Ca2+ exchanger blocker KB-R7943 and propranolol induced a significant reduction ( P < 0.001 and P < 0.05, respectively) in the dominant frequency increments produced by stretching with respect to the control and SCH-58261 series (control = 49.9%, SCH-58261 = 52.1%, KB-R7943 = 9.5%, and propranolol = 12.5%). The median of the activation intervals, the functional refractory period, and the wavelength of the activation process during VF decreased significantly under stretch in the control and SCH-58261 series, whereas no significant variations were observed in the propranolol and KB-R7943 series, with the exception of a slight but significant decrease in the median of the fibrillation intervals in the KB-R7943 series. KB-R7943 and propranolol induced a significant reduction in the activation maps complexity increment produced by stretch with respect to the control and SCH-58261 series. In conclusion, the electrophysiological effects responsible for stretch-induced VF acceleration in the rabbit heart are reduced by the Na+/Ca2+ exchanger blocker KB-R7943 and by propranolol but not by the adenosine A2 receptor antagonist SCH-58261.
Collapse
Affiliation(s)
- Francisco J. Chorro
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
- Departments of 2Medicine,
| | | | | | | | - Luis Mainar
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
| | - Joaquín Cánoves
- Service of Cardiology, Valencia University Clinic Hospital, Valencia
| | - Álvaro Tormos
- Department of Electronics, Valencia Polytechnic University, Valencia; and
| | | | - Leif Hove-Madsen
- Cardiology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Juan Cinca
- Cardiology Department, Santa Creu i Sant Pau Hospital, Barcelona, Spain
| | - Luis Such
- Physiology, Valencia University, Valencia
| |
Collapse
|
10
|
|