1
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
2
|
Adebayo AK, Bhat-Nakshatri P, Davis C, Angus SP, Erdogan C, Gao H, Green N, Kumar B, Liu Y, Nakshatri H. Oxygen tension-dependent variability in the cancer cell kinome impacts signaling pathways and response to targeted therapies. iScience 2024; 27:110068. [PMID: 38872973 PMCID: PMC11170190 DOI: 10.1016/j.isci.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air. This aided comparison of baseline and drug-induced changes in signaling pathways under physioxia and ambient oxygen. Using tumor cells from transgenic models of breast cancer and cells from breast tissues of clinically breast cancer-free women, we demonstrate oxygen-dependent differences in cell preference for epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor beta (PDGFRβ) signaling. Physioxia caused PDGFRβ-mediated activation of AKT and extracellular regulated kinase (ERK) that reduced sensitivity to EGFR and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) inhibition and maintained PDGFRβ+ epithelial-mesenchymal hybrid cells with potential cancer stem cell (CSC) properties. Cells in ambient air displayed differential EGFR activation and were more sensitive to targeted therapies. Our data emphasize the importance of oxygen considerations in preclinical cancer research to identify effective drug targets and develop combination therapy regimens.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven P. Angus
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cihat Erdogan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nick Green
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Shen Y, Thng DKH, Wong ALA, Toh TB. Mechanistic insights and the clinical prospects of targeted therapies for glioblastoma: a comprehensive review. Exp Hematol Oncol 2024; 13:40. [PMID: 38615034 PMCID: PMC11015656 DOI: 10.1186/s40164-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Glioblastoma (GBM) is a fatal brain tumour that is traditionally diagnosed based on histological features. Recent molecular profiling studies have reshaped the World Health Organization approach in the classification of central nervous system tumours to include more pathogenetic hallmarks. These studies have revealed that multiple oncogenic pathways are dysregulated, which contributes to the aggressiveness and resistance of GBM. Such findings have shed light on the molecular vulnerability of GBM and have shifted the disease management paradigm from chemotherapy to targeted therapies. Targeted drugs have been developed to inhibit oncogenic targets in GBM, including receptors involved in the angiogenic axis, the signal transducer and activator of transcription 3 (STAT3), the PI3K/AKT/mTOR signalling pathway, the ubiquitination-proteasome pathway, as well as IDH1/2 pathway. While certain targeted drugs showed promising results in vivo, the translatability of such preclinical achievements in GBM remains a barrier. We also discuss the recent developments and clinical assessments of targeted drugs, as well as the prospects of cell-based therapies and combinatorial therapy as novel ways to target GBM. Targeted treatments have demonstrated preclinical efficacy over chemotherapy as an alternative or adjuvant to the current standard of care for GBM, but their clinical efficacy remains hindered by challenges such as blood-brain barrier penetrance of the drugs. The development of combinatorial targeted therapies is expected to improve therapeutic efficacy and overcome drug resistance.
Collapse
Affiliation(s)
- Yating Shen
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Dexter Kai Hao Thng
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Andrea Li Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, Singapore.
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Ezelarab HAA, Abd El-Hafeez AA, Ali TFS, Sayed AM, Hassan HA, Beshr EAM, Abbas SH. New 2-oxoindole derivatives as multiple PDGFRα/ß and VEGFR-2 tyrosine kinase inhibitors. Bioorg Chem 2024; 145:107234. [PMID: 38412650 DOI: 10.1016/j.bioorg.2024.107234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRβ, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRβ active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| |
Collapse
|
6
|
Frumento D, Grossi G, Falesiedi M, Musumeci F, Carbone A, Schenone S. Small Molecule Tyrosine Kinase Inhibitors (TKIs) for Glioblastoma Treatment. Int J Mol Sci 2024; 25:1398. [PMID: 38338677 PMCID: PMC10855061 DOI: 10.3390/ijms25031398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
In the last decade, many small molecules, usually characterized by heterocyclic scaffolds, have been designed and synthesized as tyrosine kinase inhibitors (TKIs). Among them, several compounds have been tested at preclinical and clinical levels to treat glioblastoma multiforme (GBM). GBM is the most common and aggressive type of cancer originating in the brain and has an unfavorable prognosis, with a median survival of 15-16 months and a 5-year survival rate of 5%. Despite recent advances in treating GBM, it represents an incurable disease associated with treatment resistance and high recurrence rates. For these reasons, there is an urgent need for the development of new pharmacological agents to fight this malignancy. In this review, we reported the compounds published in the last five years, which showed promising activity in GBM preclinical models acting as TKIs. We grouped the compounds based on the targeted kinase: first, we reported receptor TKIs and then, cytoplasmic and peculiar kinase inhibitors. For each small molecule, we included the chemical structure, and we schematized the interaction with the target for some representative compounds with the aim of elucidating the mechanism of action. Finally, we cited the most relevant clinical trials.
Collapse
Affiliation(s)
| | | | | | - Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy; (D.F.); (G.G.); (M.F.); (S.S.)
| | | |
Collapse
|
7
|
Jarc L, Bandral M, Zanfrini E, Lesche M, Kufrin V, Sendra R, Pezzolla D, Giannios I, Khattak S, Neumann K, Ludwig B, Gavalas A. Regulation of multiple signaling pathways promotes the consistent expansion of human pancreatic progenitors in defined conditions. eLife 2024; 12:RP89962. [PMID: 38180318 PMCID: PMC10945307 DOI: 10.7554/elife.89962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
The unlimited expansion of human progenitor cells in vitro could unlock many prospects for regenerative medicine. However, it remains an important challenge as it requires the decoupling of the mechanisms supporting progenitor self-renewal and expansion from those mechanisms promoting their differentiation. This study focuses on the expansion of human pluripotent stem (hPS) cell-derived pancreatic progenitors (PP) to advance novel therapies for diabetes. We obtained mechanistic insights into PP expansion requirements and identified conditions for the robust and unlimited expansion of hPS cell-derived PP cells under GMP-compliant conditions through a hypothesis-driven iterative approach. We show that the combined stimulation of specific mitogenic pathways, suppression of retinoic acid signaling, and inhibition of selected branches of the TGFβ and Wnt signaling pathways are necessary for the effective decoupling of PP proliferation from differentiation. This enabled the reproducible, 2000-fold, over 10 passages and 40-45 d, expansion of PDX1+/SOX9+/NKX6-1+ PP cells. Transcriptome analyses confirmed the stabilization of PP identity and the effective suppression of differentiation. Using these conditions, PDX1+/SOX9+/NKX6-1+ PP cells, derived from different, both XY and XX, hPS cell lines, were enriched to nearly 90% homogeneity and expanded with very similar kinetics and efficiency. Furthermore, non-expanded and expanded PP cells, from different hPS cell lines, were differentiated in microwells into homogeneous islet-like clusters (SC-islets) with very similar efficiency. These clusters contained abundant β-cells of comparable functionality as assessed by glucose-stimulated insulin secretion assays. These findings established the signaling requirements to decouple PP proliferation from differentiation and allowed the consistent expansion of hPS cell-derived PP cells. They will enable the establishment of large banks of GMP-produced PP cells derived from diverse hPS cell lines. This approach will streamline SC-islet production for further development of the differentiation process, diabetes research, personalized medicine, and cell therapies.
Collapse
Affiliation(s)
- Luka Jarc
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Manuj Bandral
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Elisa Zanfrini
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Mathias Lesche
- Dresden Concept Genome Centre (DcGC), TU DresdenDresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB) Technology Platform, TU DresdenDresdenGermany
| | - Vida Kufrin
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| | - Raquel Sendra
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
| | - Daniela Pezzolla
- German Centre for Diabetes Research (DZD)MunichGermany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU DresdenDresdenGermany
| | - Ioannis Giannios
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| | - Shahryar Khattak
- Stem Cell Engineering Facility, (SCEF), CRTD, Faculty of Medicine, TU DresdenDresdenGermany
| | - Katrin Neumann
- Stem Cell Engineering Facility, (SCEF), CRTD, Faculty of Medicine, TU DresdenDresdenGermany
| | - Barbara Ludwig
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
- Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, TU DresdenDresdenGermany
- Department of Medicine III, University Hospital Carl Gustav Carus and Faculty of Medicine, TU DresdenDresdenGermany
| | - Anthony Gavalas
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherbergGermany
- German Centre for Diabetes Research (DZD)MunichGermany
| |
Collapse
|
8
|
Duangdara J, Boonsri B, Sayinta A, Supradit K, Thintharua P, Kumkate S, Suriyonplengsaeng C, Larbcharoensub N, Mingphruedhi S, Rungsakulkij N, Muangkaew P, Tangtawee P, Vassanasiri W, Suragul W, Janvilisri T, Tohtong R, Bates DO, Wongprasert K. CP-673451, a Selective Platelet-Derived Growth Factor Receptor Tyrosine Kinase Inhibitor, Induces Apoptosis in Opisthorchis viverrini-Associated Cholangiocarcinoma via Nrf2 Suppression and Enhanced ROS. Pharmaceuticals (Basel) 2023; 17:9. [PMID: 38275995 PMCID: PMC10821224 DOI: 10.3390/ph17010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) play essential roles in promoting cholangiocarcinoma (CCA) cell survival by mediating paracrine crosstalk between tumor and cancer-associated fibroblasts (CAFs), indicating the potential of PDGFR as a target for CCA treatment. Clinical trials evaluating PDGFR inhibitors for CCA treatment have shown limited efficacy. Furthermore, little is known about the role of PDGF/PDGFR expression and the mechanism underlying PDGFR inhibitors in CCA related to Opisthorchis viverrini (OV). Therefore, we examined the effect of PDGFR inhibitors in OV-related CCA cells and investigated the molecular mechanism involved. We found that the PDGF and PDGFR mRNAs were overexpressed in CCA tissues compared to resection margins. Notably, PDGFR-α showed high expression in CCA cells, while PDGFR-β was predominantly expressed in CAFs. The selective inhibitor CP-673451 induced CCA cell death by suppressing the PI3K/Akt/Nrf2 pathway, leading to a decreased expression of Nrf2-targeted antioxidant genes. Consequently, this led to an increase in ROS levels and the promotion of CCA apoptosis. CP-673451 is a promising PDGFR-targeted drug for CCA and supports the further clinical investigation of CP-673451 for CCA treatment, particularly in the context of OV-related cases.
Collapse
Affiliation(s)
- Jinchutha Duangdara
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| | - Boonyakorn Boonsri
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Apinya Sayinta
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Division of Basic and Medical Sciences, Faculty of Allied Health Sciences, Pathumthani University, Pathum Thani 12000, Thailand
| | - Kittiya Supradit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Department of Radiological Technology, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pakpoom Thintharua
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
- Chakri Naruebodindra Medical Institute (CNMI), Faculty of Medicine Ramathibodi Hospital, Samut Prakan 10540, Thailand
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Chinnawut Suriyonplengsaeng
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somkit Mingphruedhi
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Narongsak Rungsakulkij
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Paramin Muangkaew
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Pongsatorn Tangtawee
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Watoo Vassanasiri
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Wikran Suragul
- Department of Surgery, Hepato-Pancreato-Biliary Division, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (S.M.); (W.V.); (W.S.)
| | - Tavan Janvilisri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - David O. Bates
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (J.D.); (B.B.); (K.S.); (P.T.)
| |
Collapse
|
9
|
Ahmed M, Semreen AM, El-Huneidi W, Bustanji Y, Abu-Gharbieh E, Alqudah MAY, Alhusban A, Shara M, Abuhelwa AY, Soares NC, Semreen MH, Alzoubi KH. Preclinical and Clinical Applications of Metabolomics and Proteomics in Glioblastoma Research. Int J Mol Sci 2022; 24:ijms24010348. [PMID: 36613792 PMCID: PMC9820403 DOI: 10.3390/ijms24010348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GB) is a primary malignancy of the central nervous system that is classified by the WHO as a grade IV astrocytoma. Despite decades of research, several aspects about the biology of GB are still unclear. Its pathogenesis and resistance mechanisms are poorly understood, and methods to optimize patient diagnosis and prognosis remain a bottle neck owing to the heterogeneity of the malignancy. The field of omics has recently gained traction, as it can aid in understanding the dynamic spatiotemporal regulatory network of enzymes and metabolites that allows cancer cells to adjust to their surroundings to promote tumor development. In combination with other omics techniques, proteomic and metabolomic investigations, which are a potent means for examining a variety of metabolic enzymes as well as intermediate metabolites, might offer crucial information in this area. Therefore, this review intends to stress the major contribution these tools have made in GB clinical and preclinical research and highlights the crucial impacts made by the integrative "omics" approach in reducing some of the therapeutic challenges associated with GB research and treatment. Thus, our study can purvey the use of these powerful tools in research by serving as a hub that particularly summarizes studies employing metabolomics and proteomics in the realm of GB diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Alhusban
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| |
Collapse
|
10
|
Wang Q, Deng J, Sun J, Zhang H, Liu D, Gao C, Qiu J, Liu W, Qu G, Wen D, Du J, Zhang A, Zeng L, Jiang J. PDGFR kinase inhibitor protects against septic death via regulation of BTLA. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1917-1928. [PMID: 35918604 PMCID: PMC9345782 DOI: 10.1007/s11427-021-2136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Sepsis, defined as life-threatening organ failure caused by a dysregulated host response to severe infection, is a major cause of death among intensive care unit patients. Therapies targeting on immunomodulatory is a new research field in sepsis treatment. B- and T-lymphocyte attenuator (BTLA) is an inhibitory costimulatory factor molecule of B and T lymphocytes. Studies have shown that elevated expression of BTLA in lymphocytes can reduce mortality in sepsis, but its regulatory compounds and the underlying mechanism remains to be elucidated. Here, we show that treatment with CP-673451 significantly decreases mortality of septic mouse. CP-673451 is a PDGFR kinase inhibitor which can promote the expression of BTLA, inhibit the release of chemokines such as CXCL13, and reduce first the chemotaxis of B cells to the peripheral blood and vital organs. CP-673451 also inhibits both the release of cytokines and chemokines such as IL-1β, IL-6, IL-10, TNF-α, CCL1, CCL2 and CCL7 and reduces both the chemotactic ability of T cells. This suggests that CP-673451 may prevent septic death by inhibiting lymphocyte chemotaxis and alleviating "cytokine storm". In conclusion, our study provides a new therapeutic target and an effective compound for sepsis treatment.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Jianhui Sun
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Huacai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jinchao Qiu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Wenyi Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Guoxin Qu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550001, China
| | - Dalin Wen
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Juan Du
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Anqiang Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
11
|
Kagiwada H, Motono C, Horimoto K, Fukui K. Phosprof: pathway analysis database of drug response based on phosphorylation activity measurements. Database (Oxford) 2022; 2022:baac072. [PMID: 35994309 PMCID: PMC9394491 DOI: 10.1093/database/baac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Protein phosphorylation plays a fundamental role in many cellular processes. Proteins are phosphorylated by kinases, which have been studied as drug targets for the treatment of various diseases, particularly cancer. Because kinases have multiple roles in interconnected molecular pathways, their specific regulation is required to enhance beneficial and reduce adversarial effects of drugs. Using our previously developed platform, we measured phosphorylation profiles of MCF7 and K562 cells treated with 94 clinical drugs. These phosphorylation profiles can provide insights into pathway activities and biological functions. Here, we introduce Phosprof, a novel database of drug response based on phosphorylation activity. Phosprof is able to present up- or downregulated phosphorylated signature proteins on pathway maps, significant pathways on the hierarchal tree in signal transduction and commonly perturbed pathways affected by the selected drugs. It also serves as a useful web interface for new or known drug profile search based on their molecular similarity with the 94 drugs. Phosprof can be helpful for further investigation of drug responses in terms of phosphorylation by utilizing the various approved drugs whose target phenotypes are known. DATABASE URL https://phosprof.medals.jp/.
Collapse
Affiliation(s)
- Harumi Kagiwada
- *Corresponding author: Tel: +81 3 5501 1017; Fax: +81 3 5530 2061; Correspondence may also be addressed to Kazuhiko Fukui. Tel: +81 3 3599 8667; Fax: +81 3 5530 2061;
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi Koto-ku, Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Katsuhisa Horimoto
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi Koto-ku, Tokyo, Japan
| | - Kazuhiko Fukui
- *Corresponding author: Tel: +81 3 5501 1017; Fax: +81 3 5530 2061; Correspondence may also be addressed to Kazuhiko Fukui. Tel: +81 3 3599 8667; Fax: +81 3 5530 2061;
| |
Collapse
|
12
|
Takemoto A, Takagi S, Ukaji T, Gyobu N, Kakino M, Takami M, Kobayashi A, Lebel M, Kawaguchi T, Sugawara M, Tsuji-Takayama K, Ichihara K, Funauchi Y, Ae K, Matsumoto S, Sugiura Y, Takeuchi K, Noda T, Katayama R, Fujita N. Targeting Podoplanin for the Treatment of Osteosarcoma. Clin Cancer Res 2022; 28:2633-2645. [PMID: 35381070 PMCID: PMC9359727 DOI: 10.1158/1078-0432.ccr-21-4509] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Osteosarcoma, the most common bone malignancy in children, has a poor prognosis, especially when the tumor metastasizes to the lungs. Therefore, novel therapeutic strategies targeting both proliferation and metastasis of osteosarcoma are required. Podoplanin (PDPN) is expressed by various tumors and is associated with tumor-induced platelet activation via its interaction with C-type lectin-like receptor 2 (CLEC-2) on platelets. We previously found that PDPN contributed to osteosarcoma growth and metastasis through platelet activation; thus, in this study, we developed an anti-PDPN humanized antibody and evaluated its effect on osteosarcoma growth and metastasis. EXPERIMENTAL DESIGN Nine osteosarcoma cell lines and two osteosarcoma patient-derived cells were collected, and we evaluated the efficacy of the anti-DPN-neutralizing antibody PG4D2 and the humanized anti-PDPN antibody AP201, which had IgG4 framework region. The antitumor and antimetastasis effect of PG4D2 and AP201 were examined in vitro and in vivo. In addition, growth signaling by the interaction between PDPN and CLEC-2 was analyzed using phospho-RTK (receptor tyrosine kinase) array, growth assay, or immunoblot analysis under the supression of RTKs by knockout and inhibitor treatment. RESULTS We observed that PG4D2 treatment significantly suppressed tumor growth and pulmonary metastasis in osteosarcoma xenograft models highly expressing PDPN. The contribution of PDGFR activation by activated platelet releasates to osteosarcoma cell proliferation was confirmed, and the humanized antibody, AP201, suppressed in vivo osteosarcoma growth and metastasis without significant adverse events. CONCLUSIONS Targeting PDPN with a neutralizing antibody against PDPN-CLEC-2 without antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity is a novel therapeutic strategy for PDPN-positive osteosarcoma.
Collapse
Affiliation(s)
- Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Takao Ukaji
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | | | - Mamoru Kakino
- API Co., Ltd., Kanosakuradacho, Gifu-shi, Gifu, Japan
| | - Miho Takami
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Asami Kobayashi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Marie Lebel
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Tokuichi Kawaguchi
- Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Koto-ku, Tokyo, Japan
| | - Minoru Sugawara
- Project for Development of Genomics-based Cancer Medicine, Cancer Precision Medicine Center, JFCR, Koto-ku, Tokyo, Japan
| | | | | | - Yuki Funauchi
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Koto-ku, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Koto-ku, Tokyo, Japan
| | - Seiichi Matsumoto
- Sarcoma Center, Cancer Institute Hospital, JFCR, Koto-ku, Tokyo, Japan
| | - Yoshiya Sugiura
- Division of Pathology, Cancer Institute, JFCR, Koto-ku, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, JFCR, Koto-ku, Tokyo, Japan.,Department of Pathology, Cancer Institute Hospital, JFCR, Koto-ku, Tokyo, Japan.,Pathology Project for Molecular Targets, Cancer Institute, JFCR, Koto-ku, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, JFCR, Koto-ku, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Koto-ku, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, JFCR, Koto-ku, Tokyo, Japan.,Corresponding Author: Naoya Fujita, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo 135-8550, Japan. Phone: 81-3-3570-0468; Fax: 81-3-3570-0484; E-mail:
| |
Collapse
|
13
|
Alexandru O, Sevastre AS, Castro J, Artene SA, Tache DE, Purcaru OS, Sfredel V, Tataranu LG, Dricu A. Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines. Int J Mol Sci 2019; 20:ijms20194663. [PMID: 31547056 PMCID: PMC6802357 DOI: 10.3390/ijms20194663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to radiation therapy are the major therapeutic problems. Chemotherapy with DNA alkylating agent temozolomide is also used to treat HGG, despite modest effects on survival. Disregulation of several growth factor receptors (GFRs) were detected in HGG and receptor amplification in glioblastoma has been suggested to be responsible for heterogeneity propagation through clonal evolution. Molecularly targeted agents inhibiting these membrane proteins have demonstrated significant cytotoxicity in several types of cancer cells when tested in preclinical models. Platelet-derived growth factor receptors (PDGFRs) and associated signaling were found to be implicated in gliomagenesis, moreover, HGG commonly display a Platelet-derived growth factor (PDGF) autocrine pathway that is not present in normal brain tissues. We have previously shown that both the susceptibility towards PDGFR and the impact of the PDGFR inactivation on the radiation response were different in different HGG cell lines. Therefore, we decided to extend our investigation, using two other HGG cell lines that express PDGFR at the cell surface. Here, we investigated the effect of PDGFR inhibition alone or in combination with gamma radiation in 11 and 15 HGG cell lines. Our results showed that while targeting the PDGFR represents a good means of treatment in HGG, the combination of receptor inhibition with gamma radiation did not result in any discernable difference compared to the single treatment. The PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways are the major signaling pathways emerging from the GFRs, including PDGFR. Decreased sensitivity to radiation-induced cell death are often associated with redundancy in these pro-survival signaling pathways. Here we found that Phosphoinositide 3-kinases (PI3K), Extracellular-signal-regulated kinase 1/2 (ERK1/2), or c-Jun N-terminal kinase 1/2 (JNK1/2) inactivation induced radiosensitivity in HGG cells.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ani-Simona Sevastre
- Department of Pharmacological Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Juan Castro
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska University Hospital, Z1:00, 171 76 Stockholm, Sweden.
| | - Stefan-Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Oana Stefana Purcaru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, "Bagdasar-Arseni" Emergency Hospital, Soseaua Berceni 12, 041915 Bucharest, Romania.
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| |
Collapse
|
14
|
Chen S, Zhuang K, Sun K, Yang Q, Ran X, Xu X, Mu C, Zheng B, Lu Y, Zeng J, Dai Y, Pradhan S, Ran Y. Itraconazole Induces Regression of Infantile Hemangioma via Downregulation of the Platelet-Derived Growth Factor-D/PI3K/Akt/mTOR Pathway. J Invest Dermatol 2019; 139:1574-1582. [PMID: 30690033 DOI: 10.1016/j.jid.2018.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/22/2018] [Accepted: 12/30/2018] [Indexed: 02/05/2023]
Abstract
Infantile hemangioma is the most common benign vascular tumor of infancy. We have previously reported that itraconazole, a common antifungal agent, can clinically improve or cure infantile hemangioma; however, the underlying molecular mechanisms are still unclear. Here, we show that itraconazole treatment significantly inhibits proliferation and promotes apoptosis of the endothelial cells of mouse hemangioma cell line and infantile primary hemangioma endothelial cell. Itraconazole also remarkably reduced angiogenesis of hemangioma endothelial cell in vitro. We further performed transcriptome profiling via mRNA microarrays in hemangioma endothelial cell upon itraconazole treatment, and identified cytokine-cytokine receptor interaction as the top significantly enriched pathway. Importantly, itraconazole significantly reduced platelet-derived growth factor-D level, resulting in suppression of platelet-derived growth factor-β activation and inhibition of its downstream effectors, such as PI3K, Akt, 4E-BP1, and p70S6K, which are important for cellular growth and survival of infantile hemangioma. In conclusion, our results suggest that platelet-derived growth factor-D is a target of itraconazole in infantile hemangioma.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Dermatovenereology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kaiwen Zhuang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kaiyi Sun
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Yang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoxi Xu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chan Mu
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Dermatovenereology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Health and Family Planning Commission, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jun Zeng
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yalin Dai
- Department of Medical Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Sushmita Pradhan
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
15
|
Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg Med Chem 2019; 27:383-393. [DOI: 10.1016/j.bmc.2018.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
|
16
|
Yang Y, Deng Y, Chen X, Zhang J, Chen Y, Li H, Wu Q, Yang Z, Zhang L, Liu B. Inhibition of PDGFR by CP-673451 induces apoptosis and increases cisplatin cytotoxicity in NSCLC cells via inhibiting the Nrf2-mediated defense mechanism. Toxicol Lett 2018; 295:88-98. [PMID: 29857117 DOI: 10.1016/j.toxlet.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/13/2018] [Accepted: 05/27/2018] [Indexed: 10/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFRs) are abundantly expressed by stromal cells in the non-small cell lung cancer (NSCLC) microenvironment, and in a subset of cancer cells, usually with their overexpression and/or activating mutation. However, the effect of PDGFR inhibition on lung cancer cells themselves has been largely neglected. In this study, we investigated the anticancer activity of CP-673451, a potent and selective inhibitor of PDGFRβ, on NSCLC cell lines (A549 and H358) and the potential mechanism. The results showed that inhibition of PDGFRβ by CP-673451 induced a significant increase in cell apoptosis, accompanied by ROS accumulation. However, CP-673451 exerted less cytotoxicity in normal lung epithelial cell line BEAS-2B cells determined by MTT and apoptosis assay. Elimination of ROS by NAC reversed the CP-673451-induced apoptosis in NSCLC cells. Furthermore, CP-673451 down-regulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) probably through inhibition of PI3K/Akt pathway. Rescue of Nrf2 activity counteracted the effects of CP-673451 on cell apoptosis and ROS accumulation. Silencing PDGFRβ expression by PDGFRβ siRNA exerted similar effects with CP-673451 in A549 cells, and when PDGFRβ was knockdowned by PDGFRβ siRNA, CP-673451 produced no additional effects on cell viability, ROS and GSH production, Nrf2 expression as well as PI3K/Akt pathway activity. Specifically, Nrf2 plays an indispensable role in NSCLC cell sensitivity to platinum-based treatments and we found that combination of CP-673451 and cisplatin produced a synergistic anticancer effect and substantial ROS production in vitro. Therefore, these results clearly demonstrate the effectiveness of inhibition of PDGFRβ against NSCLC cells and strongly suggest that CP-673451 may be a promising adjuvant chemotherapeutic drug.
Collapse
Affiliation(s)
- Yang Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanchao Deng
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiangcui Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahao Zhang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yueming Chen
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huachao Li
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qipeng Wu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhicheng Yang
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Bing Liu
- Department of Clinical pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Yin L, He J, Xue J, Na F, Tong R, Wang J, Gao H, Tang F, Mo X, Deng L, Lu Y. PDGFR-β inhibitor slows tumor growth but increases metastasis in combined radiotherapy and Endostar therapy. Biomed Pharmacother 2018; 99:615-621. [PMID: 29653486 DOI: 10.1016/j.biopha.2018.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pericytes are pivotal mural cells of blood vessels and play an essential role in coordinating the function of endothelial cells. Previous studies demonstrated that Endostar, a novel endostatin targeting endothelial cells, can enhance the effect of radiotherapy (RT). The present study addressed whether inhibiting pericytes could potentially improve the efficacy of combined RT and Endostar therapy. METHODS Platelet-derived growth factor beta-receptor inhibitor (CP673451) was chosen to inhibit pericytes and RT (12 Gy) was delivered. Lewis lung carcinoma-bearing C57BL/6 mice were randomized into 3 groups: RT, RT + Endo, and RT + Endo + CP673451. Subsequently, tumor microvessel density (MVD), pericyte coverage, tumor hypoxia, and lung metastasis were monitored at different time points following different therapies. RESULTS Compared to the other two groups, RT + Endo + CP673451 treatment markedly inhibited tumor growth with no improvement in the overall survival. Further analyses clarified that in comparison to RT alone, RT + Endo significantly reduced the tumor MVD, with a greater decrease noted in the RT + Endo + CP673451 group. However, additional CP673451 accentuated tumor hypoxia and enhanced the pulmonary metastasis in the combined RT and Endostar treatment. CONCLUSIONS Tumor growth can be further suppressed by pericyte inhibitor; however, metastases are potentially enhanced. More in-depth studies are warranted to confirm the potential benefits and risks of anti-pericyte therapy.
Collapse
Affiliation(s)
- Limei Yin
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jiazhuo He
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Ruizhan Tong
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Jingwen Wang
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Hui Gao
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Fei Tang
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Lei Deng
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China.
| | - You Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
18
|
Manaenko A, Yang P, Nowrangi D, Budbazar E, Hartman RE, Obenaus A, Pearce WJ, Zhang JH, Tang J. Inhibition of stress fiber formation preserves blood-brain barrier after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2018; 38:87-102. [PMID: 27864464 PMCID: PMC5757435 DOI: 10.1177/0271678x16679169] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracerebral hemorrhage (ICH) represents the deadliest subtype of all strokes. The development of brain edema, a consequence of blood-brain barrier (BBB) disruption, is the most life-threatening event after ICH. Pathophysiological conditions activate the endothelium, one of the components of BBB, inducing rearrangement of the actin cytoskeleton. Upon activation, globular actin assembles into a filamentous actin resulting in the formation of contractile actin bundles, stress fibers. The contraction of stress fibers leads to the formation of intercellular gaps between endothelial cells increasing the permeability of BBB. In the present study, we investigated the effect of ICH on stress fiber formation in CD1 mice. We hypothesized that ICH-induced formation of stress fiber is triggered by the activation of PDGFR-β and mediated by the cortactin/RhoA/LIMK pathway. We demonstrated that ICH induces formation of stress fibers. Furthermore, we demonstrated that the inhibition of PDGFR-β and its downstream reduced the number of stress fibers, preserving BBB and resulting in the amelioration of brain edema and improvement of neurological functions in mice after ICH.
Collapse
Affiliation(s)
- Anatol Manaenko
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,2 Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peng Yang
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,3 Department of Emergency Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Derek Nowrangi
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Enkhjargal Budbazar
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Richard E Hartman
- 4 Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| | - Andre Obenaus
- 5 Department of Pediatrics, Loma Linda University, Loma Linda, CA, USA
| | - William J Pearce
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,6 Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.,7 Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Jiping Tang
- 1 Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
19
|
Sugg KB, Markworth JF, Disser NP, Rizzi AM, Talarek JR, Sarver DC, Brooks SV, Mendias CL. Postnatal tendon growth and remodeling require platelet-derived growth factor receptor signaling. Am J Physiol Cell Physiol 2017; 314:C389-C403. [PMID: 29341790 DOI: 10.1152/ajpcell.00258.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the fundamental biological activities of many cells that compose musculoskeletal tissues. However, little is known about the role of PDGFR signaling during tendon growth and remodeling in adult animals. Using the hindlimb synergist ablation model of tendon growth, our objectives were to determine the role of PDGFR signaling in the adaptation of tendons subjected to a mechanical growth stimulus, as well as to investigate the biological mechanisms behind this response. We demonstrate that both PDGFRs, PDGFRα and PDGFRβ, are expressed in tendon fibroblasts and that the inhibition of PDGFR signaling suppresses the normal growth of tendon tissue in response to mechanical growth cues due to defects in fibroblast proliferation and migration. We also identify membrane type-1 matrix metalloproteinase (MT1-MMP) as an essential proteinase for the migration of tendon fibroblasts through their extracellular matrix. Furthermore, we report that MT1-MMP translation is regulated by phosphoinositide 3-kinase/Akt signaling, while ERK1/2 controls posttranslational trafficking of MT1-MMP to the plasma membrane of tendon fibroblasts. Taken together, these findings demonstrate that PDGFR signaling is necessary for postnatal tendon growth and remodeling and that MT1-MMP is a critical mediator of tendon fibroblast migration and a potential target for the treatment of tendon injuries and diseases.
Collapse
Affiliation(s)
- Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - James F Markworth
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Nathaniel P Disser
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Andrew M Rizzi
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Jeffrey R Talarek
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan Medical School , Ann Arbor, Michigan
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan Medical School , Ann Arbor, Michigan.,Hospital for Special Surgery , New York, New York
| |
Collapse
|
20
|
Effendi N, Ogawa K, Mishiro K, Takarada T, Yamada D, Kitamura Y, Shiba K, Maeda T, Odani A. Synthesis and evaluation of radioiodinated 1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}piperidin-4-amine derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg Med Chem 2017; 25:5576-5585. [PMID: 28838832 DOI: 10.1016/j.bmc.2017.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) is a transmembrane tyrosine kinase receptor and it is upregulated in various malignant tumors. Radiolabeled PDGFRβ inhibitors can be a convenient tool for the imaging of tumors overexpressing PDGFRβ. In this study, [125I]-1-{5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinoline-8-yl}piperidin-4-amine ([125I]IIQP) and [125I]-N-3-iodobenzoyl-1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}-piperidin-4-amine ([125I]IB-IQP) were designed and synthesized, and their potential as PDGFRβ imaging agents was evaluated. In cellular uptake experiments, [125I]IIQP and [125I]IB-IQP showed higher uptake by PDGFRβ-positive cells than by PDGFRβ-negative cells, and the uptake in PDGFRβ-positive cells was inhibited by co-culture with PDGFRβ ligands. The biodistribution of both radiotracers in normal mice exhibited hepatobiliary excretion as the main route. In mice inoculated with BxPC3-luc (PDGFRβ-positive), the tumor uptake of radioactivity at 1h after the injection of [125I]IIQP was significantly higher than that after the injection of [125I]IB-IQP. These results indicated that [125I]IIQP can be a suitable PDGFRβ imaging agent. However, further modification of its structure will be required to obtain a more appropriate PDGFRβ-targeted imaging agent with a higher signal/noise ratio.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Universitas Muslim Indonesia, Faculty of Pharmacy, Urip Sumiharjo KM. 10, Makassar 90-231, Indonesia
| | - Kazuma Ogawa
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Kenji Mishiro
- Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- Okayama University, Graduate School of Medicine, Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Yamada
- Okayama University, Graduate School of Medicine, Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Niigata University of Pharmacy and Applied Sciences, Division of Pharmacology, 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata-ken, 956-8603, Japan
| | - Yoji Kitamura
- Kanazawa University, Advanced Science Research Centre, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiro Shiba
- Kanazawa University, Advanced Science Research Centre, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takehiko Maeda
- Niigata University of Pharmacy and Applied Sciences, Division of Pharmacology, 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata-ken, 956-8603, Japan
| | - Akira Odani
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
21
|
Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin 2017; 38:591-613. [PMID: 28317871 DOI: 10.1038/aps.2016.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.
Collapse
|
22
|
Sugg KB, Korn MA, Sarver DC, Markworth JF, Mendias CL. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett 2017; 591:801-809. [PMID: 28129672 DOI: 10.1002/1873-3468.12571] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/16/2022]
Abstract
The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth.
Collapse
Affiliation(s)
- Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael A Korn
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James F Markworth
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Caporali A, Martello A, Miscianinov V, Maselli D, Vono R, Spinetti G. Contribution of pericyte paracrine regulation of the endothelium to angiogenesis. Pharmacol Ther 2016; 171:56-64. [PMID: 27742570 DOI: 10.1016/j.pharmthera.2016.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During physiological development and after a stressor event, vascular cells communicate with each other to evoke new vessel formation-a process known as angiogenesis. This communication occurs via direct contact and via paracrine release of proteins and nucleic acids, both in a free form or encapsulated into micro-vesicles. In diseases with an altered angiogenic response, such as cancer and diabetic vascular complications, it becomes of paramount importance to tune the cell communication process. Endothelial cell growth and migration are essential processes for new vessel formation, and pericytes, together with some classes of circulating monocytes, are important endothelial regulators. The interaction between pericytes and the endothelium is facilitated by their anatomical apposition, which involves endothelial cells and pericytes sharing the same basement membrane. However, the role of pericytes is not fully understood. The characteristics and the function of tissue-specific pericytesis are the focus of this review. Factors involved in the cross-talk between these cell types and the opportunities afforded by micro-RNA and micro-vesicle techniques are discussed. Targeting these mechanisms in pathological conditions, in which the vessel response is altered, is considered in relation to identification of new therapies for restoring the blood flow.
Collapse
Affiliation(s)
- A Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - A Martello
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - V Miscianinov
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D Maselli
- IRCCS MultiMedica, Milan, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - R Vono
- IRCCS MultiMedica, Milan, Italy
| | | |
Collapse
|
24
|
Konotop G, Bausch E, Nagai T, Turchinovich A, Becker N, Benner A, Boutros M, Mizuno K, Krämer A, Raab MS. Pharmacological Inhibition of Centrosome Clustering by Slingshot-Mediated Cofilin Activation and Actin Cortex Destabilization. Cancer Res 2016; 76:6690-6700. [PMID: 27634760 DOI: 10.1158/0008-5472.can-16-1144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/15/2016] [Accepted: 08/21/2016] [Indexed: 11/16/2022]
Abstract
Centrosome amplification is a hallmark of virtually all types of cancers, including solid tumors and hematologic malignancies. Cancer cells with extra centrosomes use centrosome clustering (CC) to allow for successful division. Because normal cells do not rely on this mechanism, CC is regarded as a promising target to selectively eradicate cells harboring supernumerary centrosomes. To identify novel inhibitors of CC, we developed a cell-based high-throughput screen that reports differential drug cytotoxicity for isogenic cell populations with different centrosome contents. We identified CP-673451 and crenolanib, two chemically related compounds originally developed for the inhibition of platelet-derived growth factor receptor β (PDGFR-β), as robust inhibitors of CC with selective cytotoxicity for cells with extra centrosomes. We demonstrate that these compounds induce mitotic spindle multipolarity by activation of the actin-severing protein cofilin, leading to destabilization of the cortical actin network, and provide evidence that this activation is dependent on slingshot phosphatases 1 and 2 but unrelated to PDGFR-β inhibition. More specifically, we found that although both compounds attenuated PDGF-BB-induced signaling, they significantly enhanced the phosphorylation of PDGFR-β downstream effectors, Akt and MEK, in almost all tested cancer cell lines under physiologic conditions. In summary, our data reveal a novel mechanism of CC inhibition depending on cofilin-mediated cortical actin destabilization and identify two clinically relevant compounds interfering with this tumor cell-specific target. Cancer Res; 76(22); 6690-700. ©2016 AACR.
Collapse
Affiliation(s)
- Gleb Konotop
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Elena Bausch
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Tomoaki Nagai
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Andrey Turchinovich
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Natalia Becker
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, Medical Faculty Mannheim, German Cancer Research Center and University of Heidelberg, Heidelberg, Germany
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Marc Steffen Raab
- Max-Eder Research Group "Experimental Therapies for Hematologic Malignancies", German Cancer Research Center (DKFZ) and Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Wang X, Mou Y, Yue Z, Zhang H, Su X, Wang Y, Li R, Sun X. Arsenite suppresses angiogenesis of vascular endothelial cells mediated by Platelet Derived Growth Factor Receptor-beta. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:168-173. [PMID: 27475902 DOI: 10.1016/j.etap.2016.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/12/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to investigate the effects of sodium arsenite (NaAsO2) on the angiogenesis of human umbilical vein endothelial cells (HUVECs) and the mechanism involved. Firstly, a Matrigel-based in vitro angiogenesis assay demonstrated that arsenite suppressed the angiogenesis of HUVECs in a dose-dependent manner. Then by using a global inhibitor for multiple growth factor receptors (E7080) and a specific inhibitor of PDGFR-beta (CP-673451), we found that E7080 completely prevented and CP-673451 significantly decreased the angiogenesis of HUVECs. This suggested that angiogenesis of HUVECs depends on the signal pathway mediated by tyrosine kinase receptors and that among them, PDGFR-beta has an important regulatory function. Finally by using porcine aortic endothelial cells which stably express human PDGFR-beta, we found that arsenite suppressed the angiogenesis mediated by PDGFR-beta. Based on these results, we conclude that arsenite suppressed the angiogenesis of the vascular endothelial cells, that this effect is mediated by PDGFR-beta, and postulate that it might contribute to the injuries of blood vessel in arsenism.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yan Mou
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China; The Second Hospital of Jilin University, Changchun, PR China
| | - Zhen Yue
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Xuejin Su
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yang Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Ronggui Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China.
| | - Xin Sun
- Life Science Research Center, Beihua University, Jilin, PR China.
| |
Collapse
|
26
|
Olesen SH, Zhu JY, Martin MP, Schönbrunn E. Discovery of Diverse Small-Molecule Inhibitors of Mammalian Sterile20-like Kinase 3 (MST3). ChemMedChem 2016; 11:1137-44. [PMID: 27135311 PMCID: PMC7771544 DOI: 10.1002/cmdc.201600115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/25/2016] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests key roles for members of the mammalian Sterile20-like (MST) family of kinases in many aspects of biology. MST3 is a member of the STRIPAK complex, the deregulation of which has recently been associated with cancer cell migration and metastasis. Targeting MST3 with small-molecule inhibitors may be beneficial for the treatment of certain cancers, but little information exists on the potential of kinase inhibitor scaffolds to engage with MST3. In this study we screened MST3 against a library of 277 kinase inhibitors using differential scanning fluorimetry and confirmed 14 previously unknown MST3 inhibitors by X-ray crystallography. These compounds, of which eight are in clinical trials or FDA approved, comprise nine distinct chemical scaffolds that inhibit MST3 enzymatic activity with IC50 values between 0.003 and 23 μm. The structure-activity relationships explain the differential inhibitory activity of these compounds against MST3 and the structural basis for high binding potential, the information of which may serve as a framework for the rational design of MST3-selective inhibitors as potential therapeutics and to interrogate the function of this enzyme in diseased cells.
Collapse
Affiliation(s)
- Sanne H Olesen
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jin-Yi Zhu
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mathew P Martin
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Newcastle Cancer Centre, Newcastle University, Newcastle Upon Tyne, Tyne and Wear, NE2 4HH8, UK
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
27
|
Ehnman M, Missiaglia E, Folestad E, Selfe J, Strell C, Thway K, Brodin B, Pietras K, Shipley J, Östman A, Eriksson U. Distinct effects of ligand-induced PDGFRα and PDGFRβ signaling in the human rhabdomyosarcoma tumor cell and stroma cell compartments. Cancer Res 2013; 73:2139-49. [PMID: 23338608 DOI: 10.1158/0008-5472.can-12-1646] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Platelet-derived growth factor receptors (PDGFR) α and β have been suggested as potential targets for treatment of rhabdomyosarcoma, the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes, with PDGF-D as the solely overexpressed PDGFRβ ligand. By immunohistochemistry, PDGF-CC, PDGF-DD, and PDGFRα were found in tumor cells, whereas PDGFRβ was primarily detected in vascular stroma. These results are concordant with the biologic processes and pathways identified by data mining. While PDGF-CC/PDGFRα signaling associated with genes involved in the reactivation of developmental programs, PDGF-DD/PDGFRβ signaling related to wound healing and leukocyte differentiation. Clinicopathologic correlations further identified associations between PDGFRβ in vascular stroma and the alveolar subtype and with presence of metastases. Functional validation of our findings was carried out in molecularly distinct model systems, where therapeutic targeting reduced tumor burden in a PDGFR-dependent manner with effects on cell proliferation, vessel density, and macrophage infiltration. The PDGFR-selective inhibitor CP-673,451 regulated cell proliferation through mechanisms involving reduced phosphorylation of GSK-3α and GSK-3β. Additional tissue culture studies showed a PDGFR-dependent regulation of rhabdosphere formation/cancer cell stemness, differentiation, senescence, and apoptosis. In summary, the study shows a clinically relevant distinction in PDGF signaling in human rhabdomyosarcoma and also suggests continued exploration of the influence of stromal PDGFRs on sarcoma progression.
Collapse
Affiliation(s)
- Monika Ehnman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang W, Tai CK, Kershaw AD, Solly SK, Klatzmann D, Kasahara N, Chen TC. Use of replication-competent retroviral vectors in an immunocompetent intracranial glioma model. Neurosurg Focus 2006; 20:E25. [PMID: 16709031 PMCID: PMC8295718 DOI: 10.3171/foc.2006.20.4.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors had previously reported on a replication-competent retrovirus (RCR) that has been demonstrated to be stable, capable of effective transduction, and able to prolong survival in an intracranial tumor model in nude mice. The purpose of this study was further investigation of this gene therapy option. METHODS The transduction efficiency of RCR in RG2, an immunocompetent intracranial tumor model, was tested in Fischer 344 rats. The immune response to the RCR vector was expressed by the quantification of CD4, CD8, and CD11/b in tumors. The pharmaceutical efficacy of the suicide gene CD in converting prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) was measured using fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy. Animal survival data were plotted on Kaplan-Meier survival curves. Finally, the biodistribution of RCR was determined using quantitative real-time polymerase chain reaction (RT-PCR) for the detection of retroviral env gene. There was no evidence of viral transduction in normal brain cells. Neither severe inflammation nor immunoreaction occurred after intracranial injection of RCR-green fluorescent protein compared with phosphate-buffered saline (PBS). The 19F-NMR spectroscopy studies demonstrated that RCR-CD was able to convert 5-FC to 5-FU effectively in vitro. The infection of RG2 brain tumors with RCR-CD and their subsequent treatment with 5-FC significantly prolonged survival compared with that in animals with RG2 transduced tumors treated with PBS. In contrast to the nude mouse model, evidence of virus dissemination to the systemic organs after intracranial injection was not detected using RT-PCR. CONCLUSIONS The RCR-mediated suicide gene therapy described in this paper effectively transduced malignant gliomas in an immunocompetent in vivo rodent model, prolonging survival, without evidence of severe intracranial inflammation, and without local transduction of normal brain cells or systemic organs.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|