1
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8. Nat Commun 2021; 12:1624. [PMID: 33712610 PMCID: PMC7954855 DOI: 10.1038/s41467-021-21859-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Adult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.
Collapse
|
3
|
Shackleton B, Crawford F, Bachmeier C. Apolipoprotein E-mediated Modulation of ADAM10 in Alzheimer's Disease. Curr Alzheimer Res 2018; 14:578-585. [PMID: 28164773 DOI: 10.2174/1567205014666170203093219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 01/19/2017] [Accepted: 01/31/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND The APOE4 allele is the strongest genetic risk factor for Alzheimer's disease (AD). It has been associated with an accumulation of amyloid-β (Aβ) in the brain, which is produced through the sequential cleavage of the amyloid-β precursor protein (AβPP) by β - and γ-secretases. Alternatively, AβPP is also cleaved by α -secretases such as A Disintegrin and Metalloproteinase Domain-containing Protein 10 (ADAM10). OBJECTIVE While several studies have investigated the impact of apoE on β- and γ-secretase, interactions between apoE and α-secretases have not been fully examined. We investigated the effect of each apoE isoform on ADAM10 in vitro and in human cortex samples. METHOD ADAM10 activity and kinetics was assessed in cell-free assays and the biological activity of ADAM10 further investigated in 7WCHO cells over-expressing wild type AβPP through ELISA. Finally, ADAM10 expression and activity was observed in the soluble fraction of both control and Alzheimer's Disease human cortex samples through ELISA. RESULTS In a cell free assay, ADAM10 activity was found to be significantly lower in apoE4 samples compared to apoE2. 7WCHO cells over expressing wild type AβPP exposed to apoE4 demonstrated reduced formation of sAβPPα compared to other apoE isoforms. We also identified APOE and AD dependent changes in ADAM10 activity and expression in the soluble brain fraction of human brain cortex. CONCLUSION Overall, our data demonstrates an apoE isoform-dependent effect on ADAM10 function and AβPP processing which may describe the elevated amyloid levels in the brains of AD subjects carrying the APOE4 allele.
Collapse
Affiliation(s)
- Ben Shackleton
- 2040 Whitfield Avenue, Sarasota, Florida 34243, United States
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, Florida, 34243, United States
| | - Corbin Bachmeier
- The Open University, Walton Hall, Milton Keynes, Buckinghamshire, MK7 6AA, United Kingdom
| |
Collapse
|
4
|
Dvorkina M, Nieddu V, Chakelam S, Pezzolo A, Cantilena S, Leite AP, Chayka O, Regad T, Pistorio A, Sementa AR, Virasami A, Barton J, Montano X, Lechertier T, Brindle N, Morgenstern D, Lebras M, Burns AJ, Saunders NJ, Hodivala-Dilke K, Bagella L, De The H, Anderson J, Sebire N, Pistoia V, Sala A, Salomoni P. A Promyelocytic Leukemia Protein-Thrombospondin-2 Axis and the Risk of Relapse in Neuroblastoma. Clin Cancer Res 2016; 22:3398-409. [PMID: 27076624 DOI: 10.1158/1078-0432.ccr-15-2081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Neuroblastoma is a childhood malignancy originating from the sympathetic nervous system with a complex biology, prone to metastasize and relapse. High-risk, metastatic cases are explained in part by amplification or mutation of oncogenes, such as MYCN and ALK, and loss of tumor suppressor genes in chromosome band 1p. However, it is fundamental to identify other pathways responsible for the large portion of neuroblastomas with no obvious molecular alterations. EXPERIMENTAL DESIGN Neuroblastoma cell lines were used for the assessment of tumor growth in vivo and in vitro Protein expression in tissues and cells was assessed using immunofluorescence and IHC. The association of promyelocytic leukemia (PML) expression with neuroblastoma outcome and relapse was calculated using log-rank and Mann-Whitney tests, respectively. Gene expression was assessed using chip microarrays. RESULTS PML is detected in the developing and adult sympathetic nervous system, whereas it is not expressed or is low in metastatic neuroblastoma tumors. Reduced PML expression in patients with low-risk cancers, that is, localized and negative for the MYCN proto-oncogene, is strongly associated with tumor recurrence. PML-I, but not PML-IV, isoform suppresses angiogenesis via upregulation of thrombospondin-2 (TSP2), a key inhibitor of angiogenesis. Finally, PML-I and TSP2 expression inversely correlates with tumor angiogenesis and recurrence in localized neuroblastomas. CONCLUSIONS Our work reveals a novel PML-I-TSP2 axis for the regulation of angiogenesis and cancer relapse, which could be used to identify patients with low-risk, localized tumors that might benefit from chemotherapy. Clin Cancer Res; 22(13); 3398-409. ©2016 AACR.
Collapse
Affiliation(s)
- Maria Dvorkina
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom
| | - Valentina Nieddu
- Department of Life Sciences, Institute of Environment and Health, Brunel University London, Uxbridge, United Kingdom. Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | - Shalini Chakelam
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom
| | - Annalisa Pezzolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Sandra Cantilena
- Department of Life Sciences, Institute of Environment and Health, Brunel University London, Uxbridge, United Kingdom. Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova, Italy
| | - Ana Paula Leite
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom
| | - Olesya Chayka
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom. UCL Institute of Child Health, London, United Kingdom
| | - Tarik Regad
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom. Nottingham Trent University, Nottingham, United Kingdom
| | | | - Angela Rita Sementa
- Laboratorio di Anatomia Patologica, Istituto Giannina Gaslini, Genova, Italy
| | - Alex Virasami
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | - Jack Barton
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | - Ximena Montano
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Nicola Brindle
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom
| | - Daniel Morgenstern
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | - Morgane Lebras
- Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - Alan J Burns
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genova, Italy. Birth Defects Research Centre. Dept. Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Nigel J Saunders
- Department of Life Sciences, Institute of Environment and Health, Brunel University London, Uxbridge, United Kingdom
| | | | - Luigi Bagella
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy. Institut Universitaire d'Hematologie, Sant-Louis Hospital, Paris Diderot University, Paris, France
| | - Hugues De The
- Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - John Anderson
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | - Neil Sebire
- UCL Institute of Child Health, London, United Kingdom. Epidemiologia e Biostatistica, Istituto Giannina Gaslini, Genova, Italy
| | - Vito Pistoia
- Nottingham Trent University, Nottingham, United Kingdom
| | - Arturo Sala
- Department of Life Sciences, Institute of Environment and Health, Brunel University London, Uxbridge, United Kingdom.
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Abstract
OBJECTIVES Some patients with primary biliary cirrhosis (PBC) have antinuclear antibodies (ANAs). These ANAs include the "multiple nuclear dots" (MND) staining pattern, targeting promyelocytic leukemia protein (PML) nuclear body (NB) components, such as "speckled 100-kD" protein (Sp100) and PML. A new PML NB protein, designated as Sp140, was identified using serum from a PBC patient. The aim of this study was to analyze the immune response against Sp140 protein in PBC patients. METHODS We studied 135 PBC patients and 157 pathological controls with type 1 autoimmune hepatitis, primary sclerosing cholangitis, and systemic lupus erythematosus. We used indirect immunofluorescence and a neuroblastoma cell line expressing Sp140 for detecting anti-Sp140 antibodies, and a commercially available immunoblot for detecting anti-Sp100 and anti-PML antibodies. RESULTS Anti-Sp140 antibodies were present in 20 (15%) PBC patients but not in control samples, with a higher frequency in antimitochondrial antibody (AMA)-negative cases (53 vs. 9%, P<0.0001). Anti-Sp140 antibodies were found together with anti-Sp100 antibodies in all but one case (19 of 20, 90%) and with anti-PML antibodies in 12 (60%) cases. Anti-Sp140 positivity was not associated with a specific clinical feature of PBC. CONCLUSIONS Our study identifies Sp140 as a new, highly specific autoantigen in PBC for the first time. The very frequent coexistence of anti-Sp140, anti-Sp100 and anti-PML antibodies suggests that the NB is a multiantigenic complex in PBC and enhances the diagnostic significance of these reactivities, which are particularly useful in AMA-negative cases.
Collapse
|
7
|
Cetinkaya C, Hultquist A, Su Y, Wu S, Bahram F, Påhlman S, Guzhova I, Larsson LG. Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther 2008; 6:2634-41. [PMID: 17938259 DOI: 10.1158/1535-7163.mct-06-0492] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The MYCN protooncogene is involved in the control of cell proliferation, differentiation, and survival of neuroblasts. Deregulation of MYCN by gene amplification contributes to neuroblastoma development and is strongly correlated to advanced disease and poor outcome, emphasizing the urge for new therapeutic strategies targeting MYCN function. The transcription factor N-Myc, encoded by MYCN, regulates numerous genes together with its partner Max, which also functions as a cofactor for the Mad/Mnt family of Myc antagonists/transcriptional repressors. We and others have previously reported that IFN-gamma synergistically potentiates retinoic acid (RA)-induced sympathetic differentiation and growth inhibition in neuroblastoma cells. This study shows that combined treatment of MYCN-amplified neuroblastoma cells with RA+IFN-gamma down-regulates N-Myc protein expression through increased protein turnover, up-regulates Mad1 mRNA and protein, and reduces N-Myc/Max heterodimerization. This results in a shift of occupancy at the ornithine decarboxylase N-Myc/Mad1 target promoter in vivo from N-Myc/Max to Mad1/Max predominance, correlating with histone H4 deacetylation, indicative of a chromatin structure typical of a transcriptionally repressed state. This is further supported by data showing that RA+IFN-gamma treatment strongly represses expression of N-Myc/Mad1 target genes ornithine decarboxylase and hTERT. Our results suggest that combined IFN-gamma and RA signaling can form a basis for new therapeutic strategies targeting N-Myc function for patients with high-risk, MYCN-amplified neuroblastoma.
Collapse
Affiliation(s)
- Cihan Cetinkaya
- Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, University of Uppsala, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Delaune A, Corbière C, Benjelloun FD, Legrand E, Vannier JP, Ripoll C, Vasse M. Promyelocytic leukemia-nuclear body formation is an early event leading to retinoic acid-induced differentiation of neuroblastoma cells. J Neurochem 2007; 104:89-99. [PMID: 17986232 DOI: 10.1111/j.1471-4159.2007.05019.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroblastoma is one of the most common cancers in children. Neuroblastoma differentiation is linked to the presence of the promyelocytic leukemia (PML) protein. Retinoic acid, a powerful differentiation-inducer in vitro, is a potent agent for the treatment of neuroblastoma. Using two different human neuroblastoma cell lines, SH-SY5Y and LA-N-5, we show here that PML protein leads to the formation of nuclear bodies (PML-NB) after only 1 h of retinoic acid treatment and that this formation is mediated by the extracellular signal-regulated kinase (ERK) pathway. Inhibition of protein kinase C also leads to formation of PML-NB via the ERK pathway. Both sumoylation and phosphorylation of PML in an ERK-dependent pathway are also required for formation of PML-NB. Finally, we show that PML-NB formation in neuroblastoma cells is associated with neurite outgrowth. These results support the proposal that the formation of PML-NB is correlated with the differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- A Delaune
- Groupe de recherche MERCI & IHURBM, Faculté de médecine et pharmacie, Rouen, France
| | | | | | | | | | | | | |
Collapse
|