1
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Barbieux S, Jouenne F, Machet MC, Fraitag S, Macagno N, Battistella M, Cribier B, Sohier P, Laurent-Roussel S, Carlotti A, Beltzung F, Jullié ML, Moulonguet I, Basset-Seguin N, Deschamps L, Mourah S, Samimi M, Guyétant S, Kervarrec T. Re-evaluation of the concept of basaloid follicular hamartoma associated with naevoid basal cell carcinoma syndrome: a morphological, immunohistochemical and molecular study. Pathology 2024:S0031-3025(24)00230-7. [PMID: 39455322 DOI: 10.1016/j.pathol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 10/28/2024]
Abstract
Naevoid basal cell carcinoma syndrome (NBCCS) is a rare genodermatosis caused by germline mutations in genes of the Sonic Hedgehog (SHH) pathway and is characterised by early onset of multiple basal cell carcinomas (BCCs). Although skin tumours with follicular differentiation, notably basaloid follicular hamartoma (BFH), have been reported in NBCCS, their relations with BCC are poorly defined. In this context, the aim of this study was to clarify morphological, immunohistochemical and molecular features of BFH arising in a context of NBCCS. A total of 140 skin tumours from NBCCS and 140 control BCC tumours were reviewed, blinded to clinical data and classified as BCC or BFH. The morphological characteristics of these two groups were then compared. Twenty cases were submitted for immunohistochemical and molecular analysis. Thirty-three tumours among the exploratory cohort were classified as BFH and were exclusively detected in NBCCS patients. Histopathological criteria that were significantly different from BCC were as follows: a small size (<1.5 mm), connection to a hair follicle, arborescent organoid architecture, lack of cytological atypia and infundibulocystic differentiation. Immunohistochemical analysis confirmed activation of the SHH pathway in these lesions. Targeted next-generation sequencing suggested that MYCN and GLI2/3 amplifications and TP53 mutations might be involved in progression of these follicular tumours to BCC. Our study confirms the high prevalence of BFH, representing up to 24% of skin tumours in NBCCS and potentially being BCC precursors.
Collapse
Affiliation(s)
- Simon Barbieux
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France.
| | - Fanélie Jouenne
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Marie-Christine Machet
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Sylvie Fraitag
- Department of Pathology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nicolas Macagno
- Department of Pathology, Centre Hospitalier de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France; CARADERM Network, France
| | - Maxime Battistella
- CARADERM Network, France; Department of Pathology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Bernard Cribier
- CARADERM Network, France; Department of Dermatology, Hôpitaux Universitaires et Université de Strasbourg, Strasbourg, France
| | - Pierre Sohier
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Sara Laurent-Roussel
- CARADERM Network, France; Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France; National Center of Dermatopathology - La Roquette, Paris, France
| | - Agnès Carlotti
- Department of Pathology, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Fanny Beltzung
- Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Marie-Laure Jullié
- CARADERM Network, France; Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | | | - Nicole Basset-Seguin
- CARADERM Network, France; Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Lydia Deschamps
- CARADERM Network, France; Department of Pathology, Hôpital Bichat, AP-HP, Paris, France
| | - Samia Mourah
- Department of Tumors Genomics and Pharmacology, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Mahtab Samimi
- CARADERM Network, France; Department of Dermatology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Serge Guyétant
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; Platform of Somatic Tumor Molecular Genetics, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| | - Thibault Kervarrec
- Department of Pathology, Université de Tours, Centre Hospitalier Universitaire de Tours, Tours, France; CARADERM Network, France; 'Biologie des infections à polyomavirus' Team, UMR INRA ISP 1282, Université de Tours, Tours, France
| |
Collapse
|
3
|
Giovannini D, Antonelli F, Casciati A, De Angelis C, Denise Astorino M, Bazzano G, Fratini E, Ampollini A, Vadrucci M, Cisbani E, Nenzi P, Picardi L, Saran A, Marino C, Mancuso M, Ronsivalle C, Pazzaglia S. Comparing the effects of irradiation with protons or photons on neonatal mouse brain: Apoptosis, oncogenesis and hippocampal alterations. Radiother Oncol 2024; 195:110267. [PMID: 38614282 DOI: 10.1016/j.radonc.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND PURPOSE Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.
Collapse
Affiliation(s)
- Daniela Giovannini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Francesca Antonelli
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Arianna Casciati
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | | | - Maria Denise Astorino
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Giulia Bazzano
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Emiliano Fratini
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Alessandro Ampollini
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Monia Vadrucci
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy; Italian Space Agency, Science and Research Directorate, Via del Politecnico 00133, Rome, Italy
| | | | - Paolo Nenzi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Luigi Picardi
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Anna Saran
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Carmela Marino
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy
| | - Concetta Ronsivalle
- Division of Physical Technologies and Security, ENEA Frascati Research Center, Frascati, Roma, Italy
| | - Simonetta Pazzaglia
- Division of Health Protection Technology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Roma, Italy.
| |
Collapse
|
4
|
Pazzaglia S, Eidemüller M, Lumniczky K, Mancuso M, Ramadan R, Stolarczyk L, Moertl S. Out-of-field effects: lessons learned from partial body exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:485-504. [PMID: 36001144 PMCID: PMC9722818 DOI: 10.1007/s00411-022-00988-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Partial body exposure and inhomogeneous dose delivery are features of the majority of medical and occupational exposure situations. However, mounting evidence indicates that the effects of partial body exposure are not limited to the irradiated area but also have systemic effects that are propagated outside the irradiated field. It was the aim of the "Partial body exposure" session within the MELODI workshop 2020 to discuss recent developments and insights into this field by covering clinical, epidemiological, dosimetric as well as mechanistic aspects. Especially the impact of out-of-field effects on dysfunctions of immune cells, cardiovascular diseases and effects on the brain were debated. The presentations at the workshop acknowledged the relevance of out-of-field effects as components of the cellular and organismal radiation response. Furthermore, their importance for the understanding of radiation-induced pathologies, for the discovery of early disease biomarkers and for the identification of high-risk organs after inhomogeneous exposure was emphasized. With the rapid advancement of clinical treatment modalities, including new dose rates and distributions a better understanding of individual health risk is urgently needed. To achieve this, a deeper mechanistic understanding of out-of-field effects in close connection to improved modelling was suggested as priorities for future research. This will support the amelioration of risk models and the personalization of risk assessments for cancer and non-cancer effects after partial body irradiation.
Collapse
Affiliation(s)
- S. Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - M. Eidemüller
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - K. Lumniczky
- Department of Radiobiology and Radiohygiene, Unit of Radiation Medicine, National Public Health Centre, Albert Florian u. 2-6, 1097 Budapest, Hungary
| | - M. Mancuso
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - R. Ramadan
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - L. Stolarczyk
- Danish Centre for Particle Therapy, Palle Juul-Jensens Boulevard 25, 8200 Aarhus N, Denmark
| | - S. Moertl
- Federal Office for Radiation Protection, Ingolstädter Landstr. 1, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Modulation of Hedgehog Signaling for the Treatment of Basal Cell Carcinoma and the Development of Preclinical Models. Biomedicines 2022; 10:biomedicines10102376. [PMID: 36289637 PMCID: PMC9598418 DOI: 10.3390/biomedicines10102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is the most commonly diagnosed cancer worldwide. While the survivability of BCC is high, many patients are excluded from clinically available treatments due to health risks or personal choice. Further, patients with advanced or metastatic disease have severely limited treatment options. The dysregulation of the Hedgehog (Hh) signaling cascade drives onset and progression of BCC. As such, the modulation of this pathway has driven advancements in BCC research. In this review, we focus firstly on inhibitors that target the Hh pathway as chemotherapeutics against BCC. Two therapies targeting Hh signaling have been made clinically available for BCC patients, but these treatments suffer from limited initial efficacy and a high rate of chemoresistant tumor recurrence. Herein, we describe more recent developments of chemical scaffolds that have been designed to hopefully improve upon the available therapeutics. We secondly discuss the history and recent efforts involving modulation of the Hh genome as a method of producing in vivo models of BCC for preclinical research. While there are many advancements left to be made towards improving patient outcomes with BCC, it is clear that targeting the Hh pathway will remain at the forefront of research efforts in designing more effective chemotherapeutics as well as relevant preclinical models.
Collapse
|
6
|
Osca-Verdegal R, Beltrán-García J, Górriz JL, Martínez Jabaloyas JM, Pallardó FV, García-Giménez JL. Use of Circular RNAs in Diagnosis, Prognosis and Therapeutics of Renal Cell Carcinoma. Front Cell Dev Biol 2022; 10:879814. [PMID: 35813211 PMCID: PMC9257016 DOI: 10.3389/fcell.2022.879814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma is the most common type of kidney cancer, representing 90% of kidney cancer diagnoses, and the deadliest urological cancer. While the incidence and mortality rates by renal cell carcinoma are higher in men compared to women, in both sexes the clinical characteristics are the same, and usually unspecific, thereby hindering and delaying the diagnostic process and increasing the metastatic potential. Regarding treatment, surgical resection remains the main therapeutic strategy. However, even after radical nephrectomy, metastasis may still occur in some patients, with most metastatic renal cell carcinomas being resistant to chemotherapy and radiotherapy. Therefore, the identification of new biomarkers to help clinicians in the early detection, and treatment of renal cell carcinoma is essential. In this review, we describe circRNAs related to renal cell carcinoma processes reported to date and propose the use of some in therapeutic strategies for renal cell carcinoma treatment.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis Górriz
- Department of Nephrology, University Clinic Hospital, INCLIVA, University of Valencia, Valencia, Spain
| | | | - Federico V. Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Valencia, Spain
- *Correspondence: José Luis García-Giménez,
| |
Collapse
|
7
|
Huang H, Chen T, Li F, Jin D, Li C, Yang Y, Liu X, Wang D, Di J. The functions, oncogenic roles, and clinical significance of circular RNAs in renal cell carcinoma. Med Oncol 2022; 39:72. [PMID: 35568747 DOI: 10.1007/s12032-022-01669-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is the most common form of malignancy affecting the kidneys. Circular RNAs (circRNAs) are non-coding RNAs that are derived from exonic or intronic sequences through a selective shearing process. There is growing evidence that these circRNAs can influence a range of biological pathways by serving as protein decoys, microRNA sponges, regulators of transcriptional activity, or templates for protein translation. The dysregulation of circRNA expression patterns is a hallmark of RCC and other cancer types, and there is strong evidence that these RNA species can play central roles in the onset and progression of RCC tumors. In the present review, we summarized recent findings on the functional roles and clinical impacts of circRNAs in RCC. Further, we discussed their potential utility as diagnostic biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Huang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Tao Chen
- Department of Osteology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Fei Li
- Department of Osteology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Dan Jin
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Chuan Li
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Yongbo Yang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Xuyang Liu
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China
| | - Dongmiao Wang
- Department of Oncology, Kaizhou District People's Hospital of Chongqing, Chongqing, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
8
|
Paudel S, Raina K, Tiku VR, Maurya A, Orlicky DJ, You Z, Rigby CM, Deep G, Kant R, Raina B, Agarwal C, Agarwal R. Chemopreventive efficacy of silibinin against basal cell carcinoma growth and progression in UVB-irradiated Ptch+/- mice. Carcinogenesis 2022; 43:557-570. [PMID: 35184170 PMCID: PMC9234765 DOI: 10.1093/carcin/bgac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.
Collapse
Affiliation(s)
- Sandeep Paudel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Vasundhara R Tiku
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Akhilendra Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Zhiying You
- Department of Medicine, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Cindy M Rigby
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Cancer Biology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Bupinder Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- To whom correspondence should be addressed. Tel: +1 303 724 4055; Fax +1 303 724 7266;
| |
Collapse
|
9
|
De Stefano I, Leonardi S, Casciati A, Pasquali E, Giardullo P, Antonelli F, Novelli F, Babini G, Tanori M, Tanno B, Saran A, Mancusoa M, Pazzaglia S. Contribution of Genetic Background to the Radiation Risk for Cancer and Non-Cancer Diseases in Ptch1+/- Mice. Radiat Res 2022; 197:43-56. [PMID: 33857285 DOI: 10.1667/rade-20-00247.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/19/2021] [Indexed: 11/03/2022]
Abstract
Experimental mouse studies are important to gain a comprehensive, quantitative and mechanistic understanding of the biological factors that modify individual risk of radiation-induced health effects, including age at exposure, dose, dose rate, organ/tissue specificity and genetic factors. In this study, neonatal Ptch1+/- mice bred on CD1 and C57Bl/6 background received whole-body irradiation at postnatal day 2. This time point represents a critical phase in the development of the eye lens, cerebellum and dentate gyrus (DG), when they are also particularly susceptible to radiation effects. Irradiation was performed with γ rays (60Co) at doses of 0.5, 1 and 2 Gy, delivered at 0.3 Gy/min or 0.063 Gy/min. Wild-type and mutant mice were monitored for survival, lens opacity, medulloblastoma (MB) and neurogenesis defects. We identified an inverse genetic background-driven relationship between the radiosensitivity to induction of lens opacity and MB and that to neurogenesis deficit in Ptch1+/- mutants. In fact, high incidence of radiation-induced cataract and MB were observed in Ptch1+/-/CD1 mutants that instead showed no consequence of radiation exposure on neurogenesis. On the contrary, no induction of radiogenic cataract and MB was reported in Ptch1+/-/C57Bl/6 mice that were instead susceptible to induction of neurogenesis defects. Compared to Ptch1+/-/CD1, the cerebellum of Ptch1+/-/C57Bl/6 mice showed increased radiosensitivity to apoptosis, suggesting that differences in processing radiation-induced DNA damage may underlie the opposite strain-related radiosensitivity to cancer and non-cancer pathologies. Altogether, our results showed lack of dose-rate-related effects and marked influence of genetic background on the radiosensitivity of Ptch1+/-mice, supporting a major contribution of individual sensitivity to radiation risk in the population.
Collapse
Affiliation(s)
- I De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Casciati
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - E Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - P Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Antonelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - F Novelli
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - G Babini
- Department of Physics, University of Pavia, Pavia, Italy
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - M Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - B Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - M Mancusoa
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - S Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
10
|
Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021; 11:antiox11010049. [PMID: 35052553 PMCID: PMC8773162 DOI: 10.3390/antiox11010049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation results in extensive damage to biological systems. The massive amount of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation, fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of tumors or normal cells to different doses of ionizing radiation could lead to the generation of free radical species, which can release signal mediators and lead to harmful effects. Although previous FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This review examined the prospective roles played by some phytochemicals in altering signal pathways associated with radiation response.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Rutumbara Dash
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Ashok Sharma
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, Campus de Excelencia Internacional de Ámbito Regional (CEIR)-Campus Mare Nostrum (CMN), Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| |
Collapse
|
11
|
Collier V, Musicante M, Patel T, Liu-Smith F. Sex disparity in skin carcinogenesis and potential influence of sex hormones. SKIN HEALTH AND DISEASE 2021; 1:e27. [PMID: 35664979 PMCID: PMC9060035 DOI: 10.1002/ski2.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/05/2023]
Abstract
Background Sex or gender disparity in skin cancer has been documented for a long time at the population level. UV radiation (UVR) is a common environmental risk for all three major types of skin cancer: cutaneous melanoma (CM), basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC). The underlying mechanism for sex disparity has been largely attributed to sex‐differentiated behaviour patterns related to UVR. Non‐UVR factors such as intrinsic physiological differences have been suggested but remain understudied. Aims, Materials and Methods This review summarizes and compares the known sex differences in three skin cancer types with regard to body site distribution and age influence. Results We found a similar age‐dependent sex difference pattern in CM and BCC. Specifically, CM and BCC tend to show higher incidence in young women and old men, with a switching age around menopause. The switching age suggests involvement of sex hormones, which has shown controversial influence on skin cancers at epidemiological level. Literatures regarding sex hormone receptors for oestrogen, androgen and progesterone are summarized for potential explanations at molecular level. Discussion Overall, more and more evidence suggests non‐UVR factors such as sex hormones play critical roles in skin cancer (especially CM and BCC), yet solid population and molecular evidence are required. Incidences of skin cancer are increasing which suggests limited effect for the current UVR‐avoidance prevention methods. Conclusion Fully understanding the causes of sex disparities in incidence is necessary for developing a comprehensive prevention strategy.
Collapse
Affiliation(s)
- V Collier
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA
| | - M Musicante
- College of Medicine University of Tennessee Health Science Center Memphis Tennessee USA
| | - T Patel
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA
| | - F Liu-Smith
- Kaplan-Amonette Department of Dermatology The University of Tennessee Health Science Center Memphis Tennessee USA.,Department of Preventative Medicine University of Tennessee Health Science Center Memphis Tennessee USA
| |
Collapse
|
12
|
Rahman MM, Herath D, Bladen JC, Atkar R, Pirzado MS, Harwood C, Philpott MP, Neill GW. Differential expression of phosphorylated MEK and ERK correlates with aggressive BCC subtypes. Carcinogenesis 2021; 42:975-983. [PMID: 34003214 DOI: 10.1093/carcin/bgab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is associated with aberrant Hedgehog (HH) signalling through mutational inactivation of PTCH1; however, there is conflicting data regarding MEK/ERK signalling in BCC and the signalling pathway interactions in these carcinomas. To address this, expression of active phospho (p) MEK and ERK was examined in a panel of 15 non-aggressive and 14 aggressive BCCs. Although not uniformly expressed, both phospho-proteins were detected in the nuclei and/or cytoplasm of normal and tumour-associated epidermal cells however, whereas phospho-MEK (pMEK) was present in all non-aggressive BCCs (14/14), phospho-ERK (pERK) was rarely expressed (2/14). In contrast pERK expression was more prevalent in aggressive tumours (11/14). Interestingly, pMEK was only localized to the tumour mass whereas pERK was expressed in tumours and stroma of aggressive BCCs. Similarly, pERK (but not pMEK) was absent in mouse BCC-like tumours derived from X-ray irradiated Ptch1+/- mice with stromal pERK observed in myofibroblasts of the aggressive variant as well as in the tumour mass. RNA sequencing analysis of tumour epithelium and stroma of aggressive and non-aggressive BCC revealed the upregulation of epidermal growth factor receptor- and ERK-related pathways. Angiogenesis and immune response pathways were also upregulated in the stroma compared with the tumour. PTCH1 suppressed NEB1 immortalized keratinocytes (shPTCH1) display upregulated pERK that can be independent of MEK expression. Furthermore, epidermal growth factor pathway inhibitors affect the HH pathway by suppressing GLI1. These studies reveal differential expression of pERK between human BCC subtypes that maybe active by a pathway independent of MEK.
Collapse
Affiliation(s)
- Muhammad M Rahman
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Dimalee Herath
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - John C Bladen
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Ravinder Atkar
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Muhammad S Pirzado
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Catherine Harwood
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Graham W Neill
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Huntoon K, Toland AMS, Dahiya S. Meningioma: A Review of Clinicopathological and Molecular Aspects. Front Oncol 2020; 10:579599. [PMID: 33194703 PMCID: PMC7645220 DOI: 10.3389/fonc.2020.579599] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Meningiomas are the most the common primary brain tumors in adults, representing approximately a third of all intracranial neoplasms. They classically are found to be more common in females, with the exception of higher grades that have a predilection for males, and patients of older age. Meningiomas can also be seen as a spectrum of inherited syndromes such as neurofibromatosis 2 as well as ionizing radiation. In general, the 5-year survival for a WHO grade I meningioma exceeds 80%; however, survival is greatly reduced in anaplastic meningiomas. The standard of care for meningiomas in a surgically-accessible location is gross total resection. Radiation therapy is generally saved for atypical, anaplastic, recurrent, and surgically inaccessible benign meningiomas with a total dose of ~60 Gy. However, the method of radiation, regimen and timing is still evolving and is an area of active research with ongoing clinical trials. While there are currently no good adjuvant chemotherapeutic agents available, recent advances in the genomic and epigenomic landscape of meningiomas are being explored for potential targeted therapy.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | | | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Analysis of Tumour Related Data and Clinical Features of Eyelid Carcinomas. CURRENT HEALTH SCIENCES JOURNAL 2020; 46:222-229. [PMID: 33304622 PMCID: PMC7716762 DOI: 10.12865/chsj.46.03.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
Almost 10% of worldwide skin cancers are located at the eyelid level. In European countries, malign eyelid tumours are mostly represented by basal and squamous cell carcinomas, and usually affect elderly patients. In order to study the clinical features of eyelid tumours, and potential correlations between tumour parameters, we have enrolled a cohort of 98 subjects from a south-western region of Romania. Our study confirmed the majority of results from other European studies, as basal cell carcinoma was the most frequent malign form, being diagnosed for more than 85% of patients with declared prolonged sun exposure; tumours were mostly located on the superior eyelid, especially for males, and may present slow progression rates. We have identified significant correlations only between the tumour stage and symptoms' duration, and also between the tumour stage and smoking habit, for females.
Collapse
|
15
|
Liu H, Hu G, Wang Z, Liu Q, Zhang J, Chen Y, Huang Y, Xue W, Xu Y, Zhai W. circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Am J Cancer Res 2020; 10:10791-10807. [PMID: 32929380 PMCID: PMC7482820 DOI: 10.7150/thno.47239] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) that are derived from exons or introns by special selective shearing. circRNAs have been shown to play critical roles in various human cancers. However, their roles in renal cell carcinoma (RCC) and the underlying mechanisms remain largely unknown. Methods: A novel circRNA-circPTCH1, was identified from a microarray analysis of five paired RCC tissues. Then, we validated its expression and characterization through qRT-PCR, gel electrophoresis, RNase R digestion assays and Sanger sequencing. Functional experiments were performed to determine the effect of circPTCH1 on RCC progression both in vitro and in vivo. The interactions between circPTCH1 and miR-485-5p were clarified by RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays. Results: We observed that circPTCH1 was up-regulated in RCC cell lines and tumor samples, and higher levels of circPTCH1 were significantly correlated with worse patient survival, advanced Fuhrman grade and greater risk of metastases. Elevated circPTCH1 expression led to increased migration and invasion of RCC cells both in vitro and in vivo whereas silencing circPTCH1 decreased migration and invasion and impeded the epithelial-mesenchymal transition (EMT) of RCC cells. Mechanistically, we elucidated that circPTCH1 could directly bind miR-485-5p and subsequently suppress expression of the target gene MMP14. Conclusion: circPTCH1 promotes RCC metastasis via the miR-485-5p/MMP14 axis and activation of the EMT process. Targeting circPTCH1 may represent a promising therapeutic strategy for metastatic RCC.
Collapse
|
16
|
MiR-132/212 promotes the growth of precartilaginous stem cells (PCSCs) by regulating Ihh/PTHrP signaling pathway. Biosci Rep 2020; 40:222734. [PMID: 32319512 PMCID: PMC7214394 DOI: 10.1042/bsr20191654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 11/27/2022] Open
Abstract
Precartilaginous stem cells (PCSCs) are adult stem cells that can initiate chondrocytes and bone development. In the present study, we explored whether miR-132/212 was involved in the proliferation of PCSCs via Hedgehog signaling pathway. PCSCs were isolated and purified with the fibroblast growth factor receptor-3 (FGFR-3) antibody. Cell viability, DNA synthesis and apoptosis were measured using MTT, BrdU and flow cytometric analysis. The mRNA and protein expression were detected by real-time PCR and Western blot, respectively. The target gene for miR-132/212 was validated by luciferase reporter assay. Results showed that transfection with miR-132/212 mimic significantly increased cell viability and DNA synthesis, and inhibited apoptosis of PCSCs. By contrast, miR-132/212 inhibitor could suppress growth and promote apoptosis of PCSCs. Luciferase reporter assays indicated that transfection of miR-132/212 led to a marked reduction of luciferase activity, but had no effect on PTCH1 3′-UTR mutated fragment, suggesting that Patched1 (PTCH1) is a target of miR-132/212. Furthermore, treatment with miR-132/212 mimics obviously increased the protein expression of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP), which was decreased after treatment with Hedgehog signaling inhibitor, cyclopamine. We also found that inhibition of Ihh/PTHrP signaling by cyclopamine significantly suppressed growth and DNA synthesis, and induced apoptosis in PCSCs. These findings demonstrate that miR-132/212 promotes growth and inhibits apoptosis in PCSCs by regulating PTCH1-mediated Ihh/PTHrP pathway, suggesting that miR-132/212 cluster might serve as a novel target for bone diseases.
Collapse
|
17
|
Ikehara H, Fujii K, Miyashita T, Ikemoto Y, Nagamine M, Shimojo N, Umezawa A. Establishment of a Gorlin syndrome model from induced neural progenitor cells exhibiting constitutive GLI1 expression and high sensitivity to inhibition by smoothened (SMO). J Transl Med 2020; 100:657-664. [PMID: 31758086 DOI: 10.1038/s41374-019-0346-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
The hedgehog signaling pathway is a vital factor for embryonic development and stem cell maintenance. Dysregulation of its function results in tumor initiation and progression. The aim of this research was to establish a disease model of hedgehog-related tumorigenesis with Gorlin syndrome-derived induced pluripotent stem cells (GS-iPSCs). Induced neural progenitor cells from GS-iPSCs (GS-NPCs) show constitutive high GLI1 expression and higher sensitivity to smoothened (SMO) inhibition compared with wild-type induced neural progenitor cells (WT-NPCs). The differentiation process from iPSCs to NPCs may have similarity in gene expression to Hedgehog signal-related carcinogenesis. Therefore, GS-NPCs may be useful for screening compounds to find effective drugs to control Hedgehog signaling activity.
Collapse
Affiliation(s)
- Hajime Ikehara
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshiyuki Miyashita
- Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Yu Ikemoto
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Marina Nagamine
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Molecular Genetics, Kitasato University School of Medicine, Kanagawa, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1, Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
18
|
Bellei B, Caputo S, Carbone A, Silipo V, Papaccio F, Picardo M, Eibenschutz L. The Role of Dermal Fibroblasts in Nevoid Basal Cell Carcinoma Syndrome Patients: An Overview. Int J Mol Sci 2020; 21:E720. [PMID: 31979112 PMCID: PMC7037136 DOI: 10.3390/ijms21030720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS), also named Gorlin syndrome, is a rare multisystem genetic disorder characterized by marked predisposition to basal cell carcinomas (BCCs), childhood medulloblastomas, maxillary keratocysts, celebral calcifications, in addition to various skeletal and soft tissue developmental abnormalities. Mutations in the tumor suppressor gene PATCHED1 (PTCH1) have been found to be associated in the majority of NBCCS cases. PATCH1 somatic mutations and loss of heterozygosity are also very frequent in sporadic BCCs. Unlike non-syndromic patients, NBCCS patients develop multiple BCCs in sun-protected skin area starting from early adulthood. Recent studies suggest that dermo/epidermal interaction could be implicated in BCC predisposition. According to this idea, NBCCS fibroblasts, sharing with keratinocytes the same PTCH1 germline mutation and consequent constitutive activation of the Hh pathway, display features of carcinoma-associated fibroblasts (CAF). This phenotypic traits include the overexpression of growth factors, specific microRNAs profile, modification of extracellular matrix and basement membrane composition, increased cytokines and pro-angiogenic factors secretion, and a complex alteration of the Wnt/-catenin pathway. Here, we review studies about the involvement of dermal fibroblasts in BCC predisposition of Gorlin syndrome patients. Further, we matched the emerged NBCCS fibroblast profile to those of CAF to compare the impact of cell autonomous "pre-activated state" due to PTCH1 mutations to those of skin tumor stroma.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Anna Carbone
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Vitaliano Silipo
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| | - Federica Papaccio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00100 Rome, Italy; (S.C.); (F.P.); (M.P.)
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, IRCCS, 00100 Rome, Italy; (A.C.); (V.S.); (L.E.)
| |
Collapse
|
19
|
Mutation of the PTCH1 gene predicts recurrence of breast cancer. Sci Rep 2019; 9:16359. [PMID: 31704974 PMCID: PMC6841698 DOI: 10.1038/s41598-019-52617-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common cancer in women, and some patients develop recurrence after standard therapy. Effective predictors are urgently needed to detect recurrence earlier. The activation of Hedgehog signaling in breast cancer is correlated with poor prognosis. PTCH1 is an essential membrane receptor of Hedgehog. However, there are few reports about mutations in Hedgehog genes in breast cancer. We conducted a comprehensive study via an experimental and bioinformatics approach to detect mutated genes in breast cancer. Twenty-two breast cancer patients who developed recurrence within 24 months postoperatively were enrolled with 22 control cancer patients. Targeted deep sequencing was performed to assess the mutations among individuals with breast cancer using a panel of 143 cancer-associated genes. Bioinformatics and public databases were used to predict the protein functions of the mutated genes. Mutations were identified in 44 breast cancer specimens, and the most frequently mutated genes were BRCA2, APC, ATM, BRCA1, NF1, TET2, TSC1, TSC2, NOTCH1, MSH2, PTCH1, TP53, PIK3CA, FBXW7, and RB1. Mutation of these genes was correlated with protein phosphorylation and autophosphorylation, such as peptidyl-tyrosine and protein kinase C phosphorylation. Among these highly mutated genes, mutations of PTCH1 were associated with poor prognosis and increased recurrence of breast cancer, especially mutations in exons 22 and 23. The public sequencing data from the COSMIC database were exploited to predict the functions of the mutations. Our findings suggest that mutation of PTCH1 is correlated with early recurrence of breast cancer patients and will become a powerful predictor for recurrence of breast cancer.
Collapse
|
20
|
Rahman MM, Hazan A, Selway JL, Herath DS, Harwood CA, Pirzado MS, Atkar R, Kelsell DP, Linton KJ, Philpott MP, Neill GW. A Novel Mechanism for Activation of GLI1 by Nuclear SMO That Escapes Anti-SMO Inhibitors. Cancer Res 2018; 78:2577-2588. [DOI: 10.1158/0008-5472.can-17-2897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/10/2017] [Accepted: 02/16/2018] [Indexed: 11/16/2022]
|
21
|
Differing tumor-suppressor functions of Arf and p53 in murine basal cell carcinoma initiation and progression. Oncogene 2017; 36:3772-3780. [PMID: 28263978 DOI: 10.1038/onc.2017.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Human basal cell carcinomas (BCCs) very frequently carry p53 mutations, and p53 loss markedly accelerates murine BCC carcinogenesis. We report here our studies of the mechanism by which p53 is activated to suppress BCC carcinogenesis. We find that aberrant hedgehog signaling in microscopic BCCs activates p53 in part via Arf (that is, the oncogene-induced stress pathway) but not via the DNA damage response pathway. However, Arf loss and p53 loss produce differing outcomes-loss of p53 promotes both tumor initiation and progression; loss of Arf promotes tumor progression but not initiation. Intriguingly, increased expression of Arf in tumor stromal cells, as in tumor keratinocytes themselves, contributes to suppression of BCC carcinogenesis.
Collapse
|
22
|
Zhang Y, Cartmel B, Choy CC, Molinaro AM, Leffell DJ, Bale AE, Mayne ST, Ferrucci LM. Body mass index, height and early-onset basal cell carcinoma in a case-control study. Cancer Epidemiol 2016; 46:66-72. [PMID: 28039770 DOI: 10.1016/j.canep.2016.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/30/2016] [Accepted: 12/14/2016] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common malignancy in the US. Body mass index (BMI) and height have been associated with a variety of cancer types, yet the evidence regarding BCC is limited. Therefore, we evaluated BMI and height in relation to early-onset BCC (under age 40) and explored the potential role of ultraviolet (UV) radiation exposure and estrogen-related exposures in the BMI-BCC relationship. METHODS BCC cases (n=377) were identified through a central dermatopathology facility in Connecticut. Control subjects (n=389) with benign skin conditions were randomly sampled from the same database and frequency matched to cases on age (median=36, interquartile range 33-39), gender, and biopsy site. Participants reported weight (usual adult and at age 18), adult height, sociodemographic, phenotypic, and medical characteristics, and prior UV exposures. We calculated multivariate odds ratios (ORs) and 95% confidence intervals (CIs) using unconditional logistic regression models. RESULTS Adult BMI was inversely associated with early-onset BCC (obese vs. normal OR=0.43, 95% CI=0.26-0.71). A similar inverse association was present for BMI at age 18 (OR=0.54, 95% CI=0.34-0.85). Excluding UV exposures from the BMI models and including estrogen-related exposures among women only did not alter the association between BMI and BCC, indicating limited mediation or confounding. We did not observe an association between adult height and BCC (OR per cm=1.00, 95% CI=0.98-1.02). CONCLUSIONS We found a significant inverse association between BMI and early-onset BCC, but no association between height and BCC. This association was not explained by UV exposures or estrogen-related exposures in women.
Collapse
Affiliation(s)
- Yanchang Zhang
- Yale School of Public Health, New Haven, CT, 06520, United States
| | - Brenda Cartmel
- Yale School of Public Health, New Haven, CT, 06520, United States; Yale Cancer Center, New Haven, CT, 06520, United States
| | - Courtney C Choy
- Yale School of Public Health, New Haven, CT, 06520, United States
| | - Annette M Molinaro
- UCSF Departments of Neurological Surgery and Epidemiology and Biostatistics, San Francisco, CA 94143, United States
| | - David J Leffell
- Yale Cancer Center, New Haven, CT, 06520, United States; Yale University School of Medicine, New Haven, CT 06520, United States
| | - Allen E Bale
- Yale Cancer Center, New Haven, CT, 06520, United States; Yale University School of Medicine, New Haven, CT 06520, United States
| | - Susan T Mayne
- Yale School of Public Health, New Haven, CT, 06520, United States; Yale Cancer Center, New Haven, CT, 06520, United States
| | - Leah M Ferrucci
- Yale School of Public Health, New Haven, CT, 06520, United States; Yale Cancer Center, New Haven, CT, 06520, United States.
| |
Collapse
|
23
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
24
|
Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:349-368. [PMID: 27919341 DOI: 10.1016/j.mrrev.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized.
Collapse
Affiliation(s)
- Michèle T Martin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Adeline Vulin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Hong Y, Zhang J, Zhang H, Li X, Qu J, Zhai J, Zhang L, Chen F, Li T. Heterozygous PTCH1 Mutations Impact the Bone Metabolism in Patients With Nevoid Basal Cell Carcinoma Syndrome Likely by Regulating SPARC Expression. J Bone Miner Res 2016; 31:1413-28. [PMID: 26890308 DOI: 10.1002/jbmr.2815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/23/2016] [Accepted: 02/13/2016] [Indexed: 01/18/2023]
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by bone and skin abnormalities and a predisposition to various tumors. Keratocystic odontogenic tumors (KCOTs), which are common tumors of the jaw that cause extensive damage to the jawbone, are usually accompanied with NBCCS. Germline PTCH1 mutations in NBCCS tumorigenesis have been frequently studied; however, little is known regarding the pathogenesis of bone abnormalities in this disease. This study sought to investigate the mechanism underlying heterozygous PTCH1 mutation-mediated abnormal bone metabolism in patients with NBCCS. Stromal cells were isolated from the fibrous capsules of patients with NBCCS-associated or non-syndromic keratocystic odontogenic tumors and non-syndromic tumor stromal cells without PTCH1 mutations served as controls. Germline PTCH1 heterozygous mutations were confirmed in all NBCCS samples and differential protein expression was identified using tandem mass tag-labeled proteomics analysis. Our findings revealed that osteonectin/SPARC expression was significantly downregulated in syndromic stromal cells compared with non-syndromic stromal cells. SPARC expression was even lower in stromal cells carrying PTCH1 protein truncation mutations. PTCH1 siRNA transfection demonstrated that SPARC downregulation correlates with decreased PTCH1 expression. Furthermore, exogenous SPARC promoted osteogenic differentiation of syndromic stromal cells with enhanced development of calcium nodules. In addition, bone mineral density tests showed that patients with NBCCS exhibit weak bone mass compared with sex- and age-matched controls. This study indicates that germline PTCH1 heterozygous mutations play a major role in bone metabolism in patients with NBCCS, in particular in those with PTCH1 protein truncation mutations. SPARC may represent an important downstream modulator of PTCH1 mediation of bone metabolism. Thus, bone mineral density monitoring is critical for patients with NBCCS for prevention of osteoporosis. In addition, surgical procedures on syndromic-associated KCOTs should be performed with consideration of the weaker bone mass in such patients. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yingying Hong
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianyun Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuefen Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiafei Qu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiemei Zhai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lei Zhang
- Department of Oral Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
26
|
Filocamo G, Brunetti M, Colaceci F, Sasso R, Tanori M, Pasquali E, Alfonsi R, Mancuso M, Saran A, Lahm A, Di Marcotullio L, Steinkühler C, Pazzaglia S. MK-4101, a Potent Inhibitor of the Hedgehog Pathway, Is Highly Active against Medulloblastoma and Basal Cell Carcinoma. Mol Cancer Ther 2016; 15:1177-89. [DOI: 10.1158/1535-7163.mct-15-0371] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
|
27
|
Li C, Athar M. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis. Radiat Res 2016; 185:217-28. [PMID: 26930381 DOI: 10.1667/rr4284.s1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology.
Collapse
Affiliation(s)
- Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Brennan-Crispi DM, Hossain C, Sahu J, Brady M, Riobo NA, Mahoney MG. Crosstalk between Desmoglein 2 and Patched 1 accelerates chemical-induced skin tumorigenesis. Oncotarget 2016; 6:8593-605. [PMID: 25871385 PMCID: PMC4496169 DOI: 10.18632/oncotarget.3309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/08/2015] [Indexed: 01/12/2023] Open
Abstract
Aberrant activation of Hedgehog (Hh) signaling is causative of BCCs and has been associated with a fraction of SCCs. Desmoglein 2 (Dsg2) is an adhesion protein that is upregulated in many cancers and overexpression of Dsg2 in the epidermis renders mice more susceptible to squamous-derived neoplasia. Here we examined a potential crosstalk between Dsg2 and Hh signaling in skin tumorigenesis. Our findings show that Dsg2 modulates Gli1 expression, in vitro and in vivo. Ectopic expression of Dsg2 on Ptc1(+/lacZ) background enhanced epidermal proliferation and interfollicular activation of the Hh pathway. Furthermore, in response to DMBA/TPA, the Dsg2/Ptc1+/lacZ mice developed squamous lessons earlier than the WT, Ptc1(+/lacZ), and Inv-Dsg2 littermates. Additionally, DMBA/TPA induced BCC formation in all mice harboring the Ptc1(+/lacZ) gene and the presence of Dsg2 in Dsg2/Ptc1(+/lacZ) mice doubled the BCC tumor burden. Reporter analysis revealed activation of the Hh pathway in the BCC tumors. However, in the SCCs we observed Hh activity only in the underlying dermis of the tumors. Furthermore, Dsg2/Ptc1(+/lacZ) mice demonstrated enhanced MEK/Erk1/2 activation within the tumors and expression of Shh in the dermis. In summary, our results demonstrate that Dsg2 modulates Hh signaling, and this synergy may accelerate skin tumor development by different mechanisms.
Collapse
Affiliation(s)
- Donna M Brennan-Crispi
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudia Hossain
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joya Sahu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mary Brady
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Natalia A Riobo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mỹ G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
29
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
30
|
de Santana Santos T, Vajgel A, Martins-Filho PRS, de Albuquerque Maranhao Filho AW, De Holanda Vasconcellos RJ, Frota R, Filho JRL. Nevoid Basal Cell Carcinoma Syndrome: A Long-Term Study in a Family. Craniomaxillofac Trauma Reconstr 2015; 9:94-104. [PMID: 26889355 DOI: 10.1055/s-0035-1558454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/22/2015] [Indexed: 12/11/2022] Open
Abstract
We present a family case series with 10 individuals having nevoid basal cell carcinoma syndrome (NBCCS) with a 10-year follow-up. All articles published in the literature between 1967 and 2011 on familial Gorlin-Goltz syndrome in any language were surveyed to determine the mapping of cases per country of occurrence of this disease. All patients in the present series were presented with calcification of the falx cerebri, mild hypertelorism, and frontal bossing. Odontogenic keratocystic tumors, palmar and plantar pits, and multiple basal cell carcinomas occurred in 90, 40, and 20%, respectively, of the patients. One of the patients died of skin cancer. Diagnosis of odontogenic keratocyst tumors was confirmed by histopathological examination. NBCCS is a rare autosomal dominant cancer predisposition syndrome; it is important to recognize it when a patient has multiple odontogenic keratocyst tumors because life-long monitoring is essential for patient management.
Collapse
Affiliation(s)
- Thiago de Santana Santos
- Hospital Universitário, Universidade Federal de Sergipe, Rua Claudio Batista, Aracaju, Sergipe, Brazil
| | - André Vajgel
- Department of Oral and Maxillofacial Surgery, Pernambuco School of Dentistry, Camaragibe, Pernambuco, Brazil
| | | | | | | | - Riedel Frota
- Department of Oral and Maxillofacial Surgery, Pernambuco School of Dentistry, Camaragibe, Pernambuco, Brazil
| | | |
Collapse
|
31
|
Skin cancer and new treatment perspectives: A review. Cancer Lett 2015; 357:8-42. [DOI: 10.1016/j.canlet.2014.11.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/25/2022]
|
32
|
James AW, Chang L, Shrestha S, Tirado CA, Dry SM. An unusual complex karyotype in myopericytoma. J Orthop 2015; 12:58-62. [PMID: 25829759 DOI: 10.1016/j.jor.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Myopericytoma is a perivascular neoplasm commonly found in the skin and soft tissue of extremities. These lesions often exhibit concentric vascular proliferation of spindle shaped myoid cells. METHODS/RESULTS We present a case of a 76-year old male who was diagnosed with myopericytoma and subsequent cytogenetic analysis found a highly abnormal karyotype. This karyotype includes cytogenetic mutations that have not been described in previous case studies of myopericytoma. CONCLUSIONS Some of these aberrations occur on genes that are involved in hedgehog signaling as well as pericyte proliferation, indicating a potential pericyte origin for myopericytoma tumors.
Collapse
Affiliation(s)
- Aaron W James
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Le Chang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Swati Shrestha
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Carlos A Tirado
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
De Stefano I, Tanno B, Giardullo P, Leonardi S, Pasquali E, Antonelli F, Tanori M, Casciati A, Pazzaglia S, Saran A, Mancuso M. The Patched 1 tumor-suppressor gene protects the mouse lens from spontaneous and radiation-induced cataract. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:85-95. [PMID: 25452120 DOI: 10.1016/j.ajpath.2014.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 09/04/2014] [Indexed: 11/16/2022]
Abstract
Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury. Mice heterozygous for Patched 1 (Ptch1), the Shh receptor and negative regulator of the pathway, develop spontaneous cataract and are highly susceptible to cataract induction by exposure to ionizing radiation in early postnatal age, when lens epithelial cells undergo rapid expansion in the lens epithelium. Neonatally irradiated and control Ptch1(+/-) mice were compared for markers of progenitors, Shh pathway activation, and epithelial-to-mesenchymal transition (EMT). Molecular analyses showed increased expression of the EMT-related transforming growth factor β/Smad signaling pathway in the neonatally irradiated lens, and up-regulation of mesenchymal markers Zeb1 and Vim. We further show a link between proliferation and the stemness property of lens epithelial cells, controlled by Shh. Our results suggest that Shh and transforming growth factor β signaling cooperate to promote Ptch1-associated cataract development by activating EMT, and that the Nanog marker of pluripotent cells may act as the primary transcription factor on which both signaling pathways converge after damage. These findings highlight a novel function of Shh signaling unrelated to cancer and provide a new animal model to investigate the molecular pathogenesis of cataract formation.
Collapse
Affiliation(s)
- Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Barbara Tanno
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Simona Leonardi
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Francesca Antonelli
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mirella Tanori
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Arianna Casciati
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Simonetta Pazzaglia
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| | - Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy.
| |
Collapse
|
34
|
von der Lippe C, Roscher I, Nordgarden H, Rustad C, Larsen SM, Mjøen E, Bratland Å. Man with macrocephaly, learning disability and multiple basal cell carcinomas. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2014; 134:1151-4. [PMID: 24939783 DOI: 10.4045/tidsskr.13.0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Gorlin syndrome is a rare genetic condition in which patients may develop medulloblastomas, jaw cysts and basal cell carcinomas and show congenital skeletal malformations. If left undiagnosed, Gorlin syndrome can have a number of negative consequences. Early diagnosis and good follow-up is important for all patients with rare disorders. We wish to make doctors and dentists aware of Gorlin syndrome so that, whenever the syndrome is suspected or a patient has been diagnosed, the patient is referred for assessment, treatment and follow-up by specialists who know the disorder well. Dermatology departments at university hospitals and departments of medical genetics have a key role to play in assessment and follow-up. A national support group for Gorlin syndrome has been established, consisting of a dermatologist, oncologist, geneticist, paediatrician, specialist dentist, ophthalmologist, orthopaedic surgeon, plastic surgeon, oral and maxillofacial surgeon and counsellors. Patients, relatives and health professionals can contact the Centre for Rare Disorders directly for information about Gorlin syndrome, or to be put in touch with members of the group.
Collapse
Affiliation(s)
| | - Ingrid Roscher
- Avdeling for revmatologi, hud- og infeksjonssykdommer Oslo universitetssykehus, Rikshospitalet
| | | | - Cecilie Rustad
- Avdeling for medisinsk genetikk Oslo universitetssykehus, Rikshospitalet
| | | | - Even Mjøen
- Avdeling for kjeve- og ansiktskirurgi Oslo universitetssykehus, Ullevål
| | - Åse Bratland
- Avdeling for kreftbehandling Oslo universitetssykehus, Radiumhospitalet
| |
Collapse
|
35
|
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2014; 34:2145-55. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.
Collapse
Affiliation(s)
- C Weigel
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Popanda
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
So PL, Wang GY, Wang K, Chuang M, Chiueh VC, Kenny PA, Epstein EH. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis. Cancer Prev Res (Phila) 2014; 7:407-17. [PMID: 24449057 DOI: 10.1158/1940-6207.capr-13-0304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC) is the most common human cancer. We have demonstrated previously that topical application of the retinoid prodrug tazarotene profoundly inhibits murine BCC carcinogenesis via retinoic acid receptor γ-mediated regulation of tumor cell transcription. Because topical retinoids can cause adverse cutaneous effects and because tumors can develop resistance to retinoids, we have investigated mechanisms downstream of tazarotene's antitumor effect in this model. Specifically we have used (i) global expression profiling to identify and (ii) functional cell-based assays to validate the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway as a downstream target pathway of tazarotene's action. Crucially, we have demonstrated that pharmacologic inhibition of this downstream pathway profoundly reduces murine BCC cell proliferation and tumorigenesis both in vitro and in vivo. These data identify PI3K/AKT/mTOR signaling as a highly attractive target for BCC chemoprevention and indicate more generally that this pathway may be, in some contexts, an important mediator of retinoid anticancer effects.
Collapse
Affiliation(s)
- Po-Lin So
- Jr., Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609. ; and Po-Lin So,
| | | | | | | | | | | | | |
Collapse
|
37
|
Molecular oncology of basal cell carcinomas. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Lee CW, Tan TC. Meningioma associated with Gorlin's syndrome. J Clin Neurosci 2013; 21:349-50. [PMID: 24100109 DOI: 10.1016/j.jocn.2013.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/15/2022]
Abstract
Gorlin's syndrome or naevoid basal cell carcinoma syndrome is a rare autosominal dominant condition characterised by a variety of congenital anomalies and various malignancies. The chief manifestations include multiple basal cell naevi, mandibular cysts, plantar and palmar pits, vertebral and rib abnormalities and intracranial calcifications. We report a patient with Gorlin's syndrome associated with meningioma treated at our institution. The clinical and radiological features together with the management strategies of this unusual disease entity are discussed.
Collapse
Affiliation(s)
- Chun-Wai Lee
- Department of Neurosurgery, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong
| | - Tze-Ching Tan
- Department of Neurosurgery, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong.
| |
Collapse
|
39
|
Abstract
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
Collapse
Affiliation(s)
- Dongsheng Gu
- Department of Pediatrics, Wells Center for Pediatric Research, IU Simon Cancer Center, Indiana University, Indiana, USA
| | | | | |
Collapse
|
40
|
Shimada Y, Katsube KI, Kabasawa Y, Morita KI, Omura K, Yamaguchi A, Sakamoto K. Integrated genotypic analysis of hedgehog-related genes identifies subgroups of keratocystic odontogenic tumor with distinct clinicopathological features. PLoS One 2013; 8:e70995. [PMID: 23951062 PMCID: PMC3737235 DOI: 10.1371/journal.pone.0070995] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/25/2013] [Indexed: 01/01/2023] Open
Abstract
Keratocystic odontogenic tumor (KCOT) arises as part of Gorlin syndrome (GS) or as a sporadic lesion. Gene mutations and loss of heterozygosity (LOH) of the hedgehog receptor PTCH1 plays an essential role in the pathogenesis of KCOT. However, some KCOT cases lack evidence for gene alteration of PTCH1, suggesting that other genes in the hedgehog pathway may be affected. PTCH2 and SUFU participate in the occurrence of GS-associated tumors, but their roles in KCOT development are unknown. To elucidate the roles of these genes, we enrolled 36 KCOT patients in a study to sequence their entire coding regions of PTCH1, PTCH2 and SUFU. LOH and immunohistochemical expression of these genes, as well as the downstream targets of hedgehog signaling, were examined using surgically-excised KCOT tissues. PTCH1 mutations, including four novel ones, were found in 9 hereditary KCOT patients, but not in sporadic KCOT patients. A pathogenic mutation of PTCH2 or SUFU was not found in any patients. LOH at PTCH1 and SUFU loci correlated with the presence of epithelial budding. KCOT harboring a germline mutation (Type 1) showed nuclear localization of GLI2 and frequent histological findings such as budding and epithelial islands, as well as the highest recurrence rate. KCOT with LOH but without a germline mutation (Type 2) less frequently showed these histological features, and the recurrence rate was lower. KCOT with neither germline mutation nor LOH (Type 3) consisted of two subgroups, Type 3A and 3B, which were characterized by nuclear and cytoplasmic GLI2 localization, respectively. Type 3B rarely exhibited budding and recurrence, behaving as the most amicable entity. The expression patterns of CCND1 and BCL2 tended to correlate with these subgroups. Our data indicates a significant role of PTCH1 and SUFU in the pathogenesis of KCOT, and the genotype-oriented subgroups constitute entities with different potential aggressiveness.
Collapse
Affiliation(s)
- Yasuyuki Shimada
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-ichi Katsube
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Kabasawa
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Omura
- Section of Oral and Maxillofacial Surgery, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Advanced Molecular Diagnosis and Maxillofacial Surgery, Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| | - Kei Sakamoto
- Oral Pathology, Department of Oral Restitution, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (AY); (KS)
| |
Collapse
|
41
|
Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene 2013; 33:2674-80. [PMID: 23752195 DOI: 10.1038/onc.2013.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/13/2022]
Abstract
Basal cell carcinoma (BCC), the most common type of cancer, is characterized by aberrant Hedgehog (Hh) pathway activity. Mutations in pathway components, such as PATCHED1 (PTCH1), are commonly found in BCC. While the tumor suppressor role of PTCH1 in BCC is well established, how Hh pathway activation disrupts normal skin homeostasis to promote BCC formationremains poorly understood. Like Ptc1, Sufu is a major negative regulator of the Hh pathway. Previously, we showed that inactivation of Sufu in the skin does not result in BCC formation. Why loss of Ptc1, but not Sufu, in the epidermis induces BCC formation is unclear. In this report, we utilized gene expression profiling to identify biological pathways and processes that distinguish Sufu from Ptc1 mutants, and discovered a novel role for Sufu in cell cycle regulation. We demonstrated that the Hh pathway activation inSufu and Ptc1 mutant skin is associated with abnormal cell cycle entry, ectopic expression of D-type cyclins and increasedDNA damage. However, despite the presence of DNA damage, p53 stabilization was impaired in the mutant skin. Alternative mechanism to halt genomic instability is the activation of G2/M cell cycle checkpoint, which can occur independent of p53. We found that while Ptc1 mutant cells continue to cycle, which would favor genomic instability, loss of Sufu results in G2/M cell cycle arrest.This finding may explain why inactivation of Sufu is not sufficient to drive BCC formation. Taken together, these studies revealed a unique role for Sufu in G2/M phase progression, and uncovered the molecular and cellular features associated with Hh-driven BCC.
Collapse
|
42
|
Mancuso M, Leonardi S, Giardullo P, Pasquali E, Tanori M, De Stefano I, Casciati A, Naus CC, Pazzaglia S, Saran A. Oncogenic radiation abscopal effects in vivo: interrogating mouse skin. Int J Radiat Oncol Biol Phys 2013; 86:993-9. [PMID: 23755921 DOI: 10.1016/j.ijrobp.2013.04.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. METHODS AND MATERIALS Patched1 heterozygous (Ptch1(+/-)) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1(+/-) and Cx43(+/-) mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. RESULTS We report abscopal tumor induction in the shielded skin of Ptch1(+/-) mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. CONCLUSIONS Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.
Collapse
Affiliation(s)
- Mariateresa Mancuso
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Casaccia Research Centre, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lam C, Ou JC, Billingsley EM. "PTCH"-ing it together: a basal cell nevus syndrome review. Dermatol Surg 2013; 39:1557-72. [PMID: 23725561 DOI: 10.1111/dsu.12241] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Basal cell nevus syndrome (BCNS) has existed at least since Dynastic Egyptian times. In 1960, Gorlin and Goltz first described the classic clinical triad: multiple basal cell carcinomas (BCCs), jaw keratocysts, and bifid ribs. As an autosomal-dominant disorder, it is characterized by tumorigenesis and developmental defects. OBJECTIVE To review the current literature on BCNS, including reports on epidemiology, pathogenesis, clinical presentation, diagnostic criteria, management, treatment, and prognosis. METHODS A literature review of currently available articles related to BCNS. RESULTS Individuals with a mutation in the tumor suppressor gene PTCH1 are predisposed to tumorigenesis and developmental defects. Clinical features include BCCs, often with onset in adolescence, jaw keratocysts, bifid ribs, craniofacial defects, palmar-plantar pits, and ectopic intracranial calcification. Despite high cure rates for individual lesions and various treatment modalities including excision, Mohs micrographic surgery, photodynamic therapy, and topical imiquimod, management of BCCs is challenging. The development of an oral hedgehog pathway inhibitor, vismodegib, has added a new dimension to current treatment algorithms. CONCLUSIONS Adolescents and young adults with BCC should be evaluated for BCNS. Early diagnosis of BCNS is critical for possible prevention of the devastating effects of BCCs and establishment of multidisciplinary care.
Collapse
Affiliation(s)
- Charlene Lam
- Department of Dermatology, The Milton S. Hershey Medical Center, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | | | | |
Collapse
|
44
|
Gallinari P, Filocamo G, Jones P, Pazzaglia S, Steinkühler C. Smoothened antagonists: a promising new class of antitumor agents. Expert Opin Drug Discov 2013; 4:525-44. [PMID: 23485085 DOI: 10.1517/17460440902852686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hedgehog signaling is essential for the development of most metazoans. In recent years, evidence has accumulated showing that many human tumors aberrantly re-activate this developmental signaling pathway and that interfering with it may provide a new strategy for the development of novel anti-cancer therapeutics. Smoothened is a G-protein coupled receptor-like protein that is essentially involved in hedgehog signal transduction and small molecule antagonists of Smoothened have started to show antitumor activity in preclinical models and in clinical trials. OBJECTIVE We critically review the role of hedgehog signaling in normal development and in human malignancies, the available drug discovery tools and the classes of small molecule inhibitors that are in development. We further aim to address the potential impact that pathway antagonists may have on the treatment options of cancer patients. METHODS Literature, patents and clinical trial results from the past 5 years were analyzed. CONCLUSIONS 1) A large body of evidence suggests a frequent reactivation of hedgehog signaling in human cancer. 2) Smoothened is an attractive, highly druggable target with extensive preclinical and initial clinical validation in basal cell carcinoma. Several promising novel classes of Smoothened antagonists have been discovered and are being developed as anticancer agents. 3) Our knowledge of the biology of hedgehog signaling in cancer is still very incomplete and significant efforts will be required to understand how to use the emerging novel agents in the clinic.
Collapse
Affiliation(s)
- Paola Gallinari
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Department of Oncology, IRBM- Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040 Pomezia, Italy +39 06 91093232 ; +39 06 91093549 ;
| | | | | | | | | |
Collapse
|
45
|
Radiotherapy-induced basal cell carcinomas of the scalp: are they genetically different? Aesthetic Plast Surg 2012; 36:1387-92. [PMID: 23052377 DOI: 10.1007/s00266-012-9969-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/17/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The treatment of tinea capitis using radiotherapy was introduced at the beginning of the twentieth century. In Israel, between 1949 and 1960, approximately 17,000 children underwent radiotherapy treatments for tinea capitis (actual numbers are probably higher due to irradiation in countries of origin as a prerequisite for immigration). Skin cancer presents a major problem for patients who underwent irradiation for the treatment of tinea capitis [aggressive biological behavior, multiple basal cell carcinomas (BCCs), up to 40 lesions in a single patient, with no predisposing condition such as Gorlin's or Bazex's syndromes]. There are ample data in the literature concerning the molecular changes in ultraviolet (UV) radiation-induced BCCs. However, similar data regarding ionizing radiation-induced BCCs are scarce. One work found higher rates of p53 and PTCH (both are tumor suppressor genes whose alterations are associated with BCC formation and frequency, but not biological behavior) abnormalities in post ionizing radiation BCCs. The absence of documented differences in gene expression that would account for a different biological behavior of radiotherapy-related BCCs, coupled with the aggressive and recurrent nature of these lesions, has propelled us to examine these differences by comparing gene expression in BCCs of the scalps of patients who were previously irradiated for tinea capitis in their childhood and of the scalps of patients who were not. METHODS Tissue samples of excised scalp BCCs from seven previously irradiated patients (five male, two female) and seven not previously irradiated patients (six male, one female) were frozen upon excision and genetically analyzed using DNA microarray chips. RESULTS No correlation was found between previous ionizing irradiation and gene expression. CONCLUSIONS The negative results of this study, coupled with the observation of aggressive biological behavior of BCCs in previously irradiated patients merit further attention. Other explanations for the aggressive biological behavior of radiotherapy-induced BCCs come to mind. One such explanation could be that the difference between the groups lies not in the tumor itself, but in the host, who is more susceptible to the local destruction caused by the tumor due to changes in the surrounding tissue (e.g., impaired blood supply due to radiation, structural damage in seemingly healthy skin). This hypothesis will be the focus of further research. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
46
|
Patched knockout mouse models of Basal cell carcinoma. J Skin Cancer 2012; 2012:907543. [PMID: 23024864 PMCID: PMC3449132 DOI: 10.1155/2012/907543] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/06/2012] [Indexed: 01/22/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human tumor. Mutations in the hedgehog (HH) receptor Patched (PTCH) are the main cause of BCC. Due to their high and increasing incidence, BCC are becoming all the more important for the health care system. Adequate animal models are required for the improvement of current treatment strategies. A good model should reflect the situation in humans (i.e., BCC initiation due to Ptch mutations on an immunocompetent background) and should allow for (i) BCC induction at a defined time point, (ii) analysis of defined BCC stages, and (iii) induction of BCC in 100% of animals. In addition, it should be easy to handle. Here, we compare several currently existing conventional and conditional Ptch knockout mouse models for BCC and their potential use in preclinical research. In addition, we provide new data using conditional Ptchflox/flox mice and the K5-Cre-ERT+/− driver.
Collapse
|
47
|
Kasper M, Jaks V, Hohl D, Toftgård R. Basal cell carcinoma - molecular biology and potential new therapies. J Clin Invest 2012; 122:455-63. [PMID: 22293184 DOI: 10.1172/jci58779] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog signaling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have hitherto lacked effective treatment.
Collapse
Affiliation(s)
- Maria Kasper
- Karolinska Institutet, Center for Biosciences and Department of Biosciences and Nutrition, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
48
|
Mancuso M, Leonardi S, Giardullo P, Pasquali E, Borra F, Stefano ID, Prisco MG, Tanori M, Scambia G, Majo VD, Pazzaglia S, Saran A, Gallo D. The estrogen receptor beta agonist diarylpropionitrile (DPN) inhibits medulloblastoma development via anti-proliferative and pro-apototic pathways. Cancer Lett 2011; 308:197-202. [DOI: 10.1016/j.canlet.2011.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/09/2023]
|
49
|
Heby-Henricson K, Bergström A, Rozell B, Toftgård R, Teglund S. Loss of Trp53 promotes medulloblastoma development but not skin tumorigenesis in Sufu heterozygous mutant mice. Mol Carcinog 2011; 51:754-60. [PMID: 21882258 DOI: 10.1002/mc.20852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/14/2011] [Accepted: 08/10/2011] [Indexed: 01/04/2023]
Abstract
Basal cell carcinoma of the skin typically carries genetic alterations in components of the hedgehog (HH) signaling pathway. Previously, we generated a knockout mouse with a loss-of-function mutation in suppressor of fused (Sufu), an essential repressor of the pathway downstream of Hh ligand cell surface reception. Mice heterozygous for the mutated Sufu allele develop a skin phenotype that includes lesions similar to basaloid follicular hamartomas. The purpose of the current study was to test the possibility that the simultaneous loss of the tumor suppressor gene, transformation related protein 53 (Trp53), would aggravate the Sufu skin phenotype since Trp53 loss is known to enhance the growth of other Hh-driven tumors. Consistent with previous reports, medulloblastomas and rhabdomyosarcomas developed in Sufu(+/-) ;Trp53(-/-) mice. However, the characteristic Sufu(+/-) skin phenotype was not altered in the absence of Trp53, and showed no changes in latency, multiplicity, cellular phenotype, or proliferative capacity of the basaloid lesions. This finding was both novel and intriguing and demonstrated a differential, tissue-specific sensitivity to Sufu and Trp53 tumor suppressor gene loss, which may be linked to developmental stage and the degree of proliferative activity in specific cell types.
Collapse
Affiliation(s)
- Karin Heby-Henricson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
50
|
Abstract
An increasing progress on the role of Hedgehog (Hh) signaling for carcinogenesis has been achieved since the link of Hh pathway to human cancer was firstly established. In particular, the critical role of Hh signaling in the development of Basal cell carcinoma (BCC) has been convincingly demonstrated by genetic mutation analyses, mouse models of BCCs, and successful clinical trials of BCCs using Hh signaling inhibitors. In addition, the Hh pathway activity is also reported to be involved in the pathogenesis of Squamous Cell Carcinoma (SCC), melanoma and Merkel Cell Carcinoma. These findings have significant new paradigm on Hh signaling transduction, its mechanisms in skin cancer and even therapeutic approaches for BCC. In this review, we will summarize the major advances in the understanding of Hh signaling transduction, the roles of Hh signaling in skin cancer development, and the current implications of "mechanism-based" therapeutic strategies.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Sumin Chi
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| |
Collapse
|