1
|
Yu B, Zhu Y, Zhang F, Sun D, Xu R, Wang C, Pang K. A Miniaturized In Vivo Fluorescence Microscopy Method for Monitoring Circulating Tumor Cells in Freely Moving Animals. JOURNAL OF BIOPHOTONICS 2025; 18:e202400496. [PMID: 39716436 DOI: 10.1002/jbio.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Metastasis is the leading cause of death in tumor patients, with circulating tumor cells (CTCs) serving as key biomarkers for tumor progression, metastasis, and recurrence. CTC quantity is closely linked to tumor dynamics, which are influenced by biological rhythms. Studying CTC distribution under various physiological conditions provides insights into metastasis mechanisms. However, due to the low abundance of CTCs, detection accuracy is limited, especially with small blood samples, making continuous data collection challenging. To address this, we developed a dual-channel miniaturized in vivo fluorescence microscopy system for real-time monitoring of CTCs in experimental animals. This system, which can be fixed to the head or back, enables dynamic, quantitative analysis of CTCs in the circulatory system. It offers a valuable tool for investigating tumor metastasis rhythms, drug evaluation, and prognostic assessment in freely moving animals, advancing research in metastasis mechanisms and cancer treatment.
Collapse
Affiliation(s)
- Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Fan Zhang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Rui Xu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Chenzheng Wang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| | - Kai Pang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
2
|
Pace J, Lee JJ, Srinivasarao M, Kallepu S, Low PS, Niedre M. In Vivo Labeling and Detection of Circulating Tumor Cells in Mice Using OTL38. Mol Imaging Biol 2024; 26:603-615. [PMID: 38594545 PMCID: PMC11281960 DOI: 10.1007/s11307-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.
Collapse
Affiliation(s)
- Joshua Pace
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Jane J Lee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | | | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 047906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Pulikkot S, Paul S, Hall A, Gardner B, Liu W, Hu L, Vella AT, Chen Y, Fan Z. Monitoring Circulating Myeloid Cells in Peritonitis with an In Vivo Imaging Flow Cytometer. Biomolecules 2024; 14:886. [PMID: 39199274 PMCID: PMC11351726 DOI: 10.3390/biom14080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Peritonitis is a common and life-threatening inflammatory disease. Myeloid cells are elevated in the peripheral blood and contribute to peritonitis, but their circulating dynamics are not clear. In vivo flow cytometry (IVFC) is a noninvasive technique for monitoring the dynamics of circulating cells in live animals. It has been extensively used to detect circulating tumor cells, but rarely for monitoring immune cells. Here, we describe a method adapting an intravital microscope for IVFC so that we can monitor LysM-EGFP-labeled circulating myeloid cells in a tumor necrosis factor (TNF) α-induced peritonitis mouse model. Using this IVFC method, we quantified the blood flow velocity and cell concentration in circulation. We observed a significant increase in LysM-EGFP+ cells in circulation after TNFα intraperitoneal (i.p.) injection, which reached a plateau in ~20 min. Conventional cytometry analysis showed that most LysM-EGFP+ cells were neutrophils. Increasing blood neutrophils were accompanied by neutrophil recruitment to the peritoneal cavity and neutrophil emigration from the bone marrow. We then monitored neutrophil CD64 expression in vivo and found a significant increase in TNFα-induced peritonitis. We also found that CD18 blockade doubled the circulating neutrophil number in TNFα-induced peritonitis, suggesting that CD18 is critical for neutrophil recruitment in peritonitis. Overall, we demonstrate that IVFC techniques are useful for studying the circulating dynamics of immune cells during inflammatory diseases.
Collapse
Affiliation(s)
- Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Souvik Paul
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Brianna Gardner
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Wei Liu
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
4
|
Williams AL, Scorzo AV, Strawbridge RR, Davis SC, Niedre M. Two-color diffuse in vivo flow cytometer. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:065003. [PMID: 38818515 PMCID: PMC11138342 DOI: 10.1117/1.jbo.29.6.065003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
Significance Hematogenous metastasis is mediated by circulating tumor cells (CTCs) and CTC clusters (CTCCs). We recently developed "diffuse in vivo flow cytometry" (DiFC) to detect fluorescent protein (FP) expressing CTCs in small animals. Extending DiFC to allow detection of two FPs simultaneously would allow concurrent study of different CTC sub-populations or heterogeneous CTCCs in the same animal. Aim The goal of this work was to develop and validate a two-color DiFC system capable of non-invasively detecting circulating cells expressing two distinct FPs. Approach A DiFC instrument was designed and built to detect cells expressing either green FP (GFP) or tdTomato. We tested the instrument in tissue-mimicking flow phantoms in vitro and in multiple myeloma bearing mice in vivo. Results In phantoms, we could accurately differentiate GFP+ and tdTomato+ CTCs and CTCCs. In tumor-bearing mice, CTC numbers expressing both FPs increased during disease. Most CTCCs (86.5%) expressed single FPs with the remainder both FPs. These data were supported by whole-body hyperspectral fluorescence cryo-imaging of the mice. Conclusions We showed that two-color DiFC can detect two populations of CTCs and CTCCs concurrently. This instrument could allow study of tumor development and response to therapies for different sub-populations in the same animal.
Collapse
Affiliation(s)
- Amber L. Williams
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Augustino V. Scorzo
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Lin W, Wang P, Qi Y, Zhao Y, Wei X. Progress and challenges of in vivo flow cytometry and its applications in circulating cells of eyes. Cytometry A 2024; 105:437-445. [PMID: 38549391 DOI: 10.1002/cyto.a.24837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 06/15/2024]
Abstract
Circulating inflammatory cells in eyes have emerged as early indicators of numerous major diseases, yet the monitoring of these cells remains an underdeveloped field. In vivo flow cytometry (IVFC), a noninvasive technique, offers the promise of real-time, dynamic quantification of circulating cells. However, IVFC has not seen extensive applications in the detection of circulating cells in eyes, possibly due to the eye's unique physiological structure and fundus imaging limitations. This study reviews the current research progress in retinal flow cytometry and other fundus examination techniques, such as adaptive optics, ultra-widefield retinal imaging, multispectral imaging, and optical coherence tomography, to propose novel ideas for circulating cell monitoring.
Collapse
Affiliation(s)
- Wei Lin
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peng Wang
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingxin Qi
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yanlong Zhao
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
- Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
6
|
Vora N, Shekar P, Hanulia T, Esmail M, Patra A, Georgakoudi I. Deep learning-enabled detection of rare circulating tumor cell clusters in whole blood using label-free, flow cytometry. LAB ON A CHIP 2024; 24:2237-2252. [PMID: 38456773 PMCID: PMC11019838 DOI: 10.1039/d3lc00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Prashant Shekar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Taras Hanulia
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA, 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
7
|
Pang K, Liu Q, Zhu Y, Wei X. In vivo photoacoustic flow cytometry-based study of the effect of melanin content on melanoma metastasis. JOURNAL OF BIOPHOTONICS 2024; 17:e202300405. [PMID: 38010214 DOI: 10.1002/jbio.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
A major cause of death in cancer patients is distant metastasis of tumors, in which circulating tumor cells (CTCs) are an important marker. Photoacoustic flow cytometry (PAFC) can monitor CTCs in real time, non-invasively, and label-free; we built a PAFC system and validated the feasibility of PAFC for monitoring CTCs using in vivo animal experiments. By cultivating heavily-pigmented and moderately-pigmented melanoma cells, more CTCs were detected in mice inoculated with moderately-pigmented tumor cells, resulting in more distant metastases and poorer survival status. Tumor cells with lower melanin content may produce more CTCs, increasing the risk of metastasis. CTC melanin content may be down-regulated during the metastatic which may be a potential indicator for assessing the risk of melanoma metastasis. In conclusion, PAFC can be used to assess the risk of melanoma metastasis by dynamically monitoring the number of CTCs and the CTC melanin content in future clinical diagnoses.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Qi Liu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxi Zhu
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute and Biomedical Engineering Department, Peking University, Beijing, China
| |
Collapse
|
8
|
Tang M, Feng J, Xia HF, Xu CM, Wu LL, Wu M, Hong SL, Chen G, Zhang ZL. Continuous magnetic separation microfluidic chip for tumor cell in vivo detection. Chem Commun (Camb) 2023; 59:11955-11958. [PMID: 37727113 DOI: 10.1039/d3cc04062c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Continuously recording the dynamic changes of circulating tumor cells (CTCs) is crucial for tumor metastasis. This paper creates a continuous magnetic separation microfluidic chip that enables rapid and continuous in vivo cell detection. The chip shows its potential to study tumor cell circulation in the blood, offering a new platform for studying the cellular mechanism of tumor metastasis.
Collapse
Affiliation(s)
- Man Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jiao Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Chun-Miao Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ling-Ling Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Shao-Li Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
9
|
Kim G, Park HS, Shin P, Eom T, Yoon JH, Jeong Y, Oh WY. Direct Blood Cell Flow Imaging in Microvascular Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302244. [PMID: 37309282 DOI: 10.1002/smll.202302244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Blood flow dynamics in microvascular networks are intimately related to the health of tissues and organs. While numerous imaging modalities and techniques have been developed to assess blood flow dynamics for various applications, their utilization has been hampered by limited imaging speed and indirect quantification of blood flow dynamics. Here, direct blood cell flow imaging (DBFI) is demonstrated that provides visualization of individual motions of blood cells over a field of 0.71 mm × 1.42 mm with a time resolution of 0.69 ms (1450 frames s-1 ) without using any exogenous agents. DBFI enables precise dynamic analysis of blood cell flow velocities and fluxes in various vessels over a large field, from capillaries to arteries and veins, with unprecedented time resolution. Three exemplary applications of DBFI, quantification of blood flow dynamics of 3D vascular networks, analysis of heartbeat induced blood flow dynamics, and analysis of blood flow dynamics of neurovascular coupling, illustrate the potential of this new imaging technology.
Collapse
Affiliation(s)
- Gyounghwan Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun-Sang Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Paul Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Taeguk Eom
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jin-Hui Yoon
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yong Jeong
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Zhang F, Li H, Lin X, Zhu X, Chen X, Wang B, Zhu Z, Chen X, Liang G, Zhang J, Wei X, Tian H. In vivo flow cytometry reveals an anti-metastatic effect of Rujifang in triple-negative breast cancer. Cytometry A 2023; 103:723-731. [PMID: 37276218 DOI: 10.1002/cyto.a.24768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer is the most common cancer, and triple-negative breast cancer (TNBC) has the highest metastasis and mortality rate among all breast cancer subtypes. Rujifang is a traditional Chinese medicine formula with many years of clinical application in breast cancer treatment. Here, we aim to investigate the effects of Rujifang on circulating tumor cell (CTC) dynamics and the tumor microenvironment in a ZsGreen/luciferase double-labeled TNBC orthotopic model. We report that the number of CTCs monitored by in vivo flow cytometry (IVFC) strongly correlates with disease progression. Rujifang treatment decreased the number of CTCs and suppressed the distant metastasis of TNBC. Moreover, immunofluorescence analysis revealed that Rujifang treatment could affect the tumor microenvironment by downregulating Kindlin-1, which has been reported to promote metastasis of TNBC. Our study provides evidence of the anti-metastatic effect of Rujifang against TNBC in an animal model using fluorescent cell lines. The results suggest the potential therapeutic value of Rujifang as an anti-metastatic drug, however, further clinical trials are needed to validate these findings in humans.
Collapse
Affiliation(s)
- Fuli Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongliang Li
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Xuan Lin
- Cancer Center, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, China
| | - Xi Zhu
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Xuezhang Chen
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Bin Wang
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Zhixia Zhu
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Xikang Chen
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Guiwen Liang
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Jingtao Zhang
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Biomedical Engineering Department, Peking University, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Huaqin Tian
- Cancer Center, Foshan Hospital of Traditional Chinese Medicine, Foshan, China
| |
Collapse
|
11
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
12
|
Vora N, Shekar P, Esmail M, Patra A, Georgakoudi I. Deep Learning-Enabled, Detection of Rare Circulating Tumor Cell Clusters in Whole Blood Using Label-free, Flow Cytometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551485. [PMID: 37577660 PMCID: PMC10418242 DOI: 10.1101/2023.08.01.551485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Prashant Shekar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
- # Current Affiliation: University of Massachusetts Amherst Animal Care Services, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Abani Patra
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
- Department of Mathematics, Tufts University, Medford, MA 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
13
|
Liu Z, Zhang Y, Zhao D, Chen Y, Meng Q, Zhang X, Jia Z, Cui J, Wang X. Application of Flow Cytometry in the Diagnosis of Bovine Epidemic Disease. Viruses 2023; 15:1378. [PMID: 37376677 DOI: 10.3390/v15061378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
As science and technology continue to advance, the use of flow cytometry is becoming more widespread. It can provide important information about cells in the body by detecting and analysing them, thereby providing a reliable basis for disease diagnosis. In the diagnosis of bovine epidemic diseases, flow cytometry can be used to detect bovine viral diarrhoea, bovine leukaemia, bovine brucellosis, bovine tuberculosis, and other diseases. This paper describes the structure of a flow cytometer (liquid flow system, optical detection system, data storage and analysis system) and its working principles for rapid quantitative analysis and sorting of single cells or biological particles. Additionally, the research progress of flow cytometry in the diagnosis of bovine epidemic diseases was reviewed in order to provide a reference for future research and application of flow cytometry in the diagnosis of bovine epidemic diseases.
Collapse
Affiliation(s)
- Zhilin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuliang Zhang
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Donghui Zhao
- Tongliao City Animal Quarantine Technical Service Centre, Tongliao 028000, China
| | - Yunjiao Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Qinglei Meng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xin Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Zelin Jia
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jiayu Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xueli Wang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
14
|
Zhao X, Ding L, Yan J, Xu J, He H. Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:3305. [PMID: 36992015 PMCID: PMC10059927 DOI: 10.3390/s23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Composed of a fluidic and an optical system, flow cytometry has been widely used for biosensing. The fluidic flow enables its automatic high-throughput sample loading and sorting while the optical system works for molecular detection by fluorescence for micron-level cells and particles. This technology is quite powerful and highly developed; however, it requires a sample in the form of a suspension and thus only works in vitro. In this study, we report a simple scheme to construct a flow cytometry based on a confocal microscope without any modifications. We demonstrate that line scanning of microscopy can effectively excite fluorescence of flowing microbeads or cells in a capillary tube in vitro and in blood vessels of live mice in vivo. This method can resolve microbeads at several microns and the results are comparable to a classic flow cytometer. The absolute diameter of flowing samples can be indicated directly. The sampling limitations and variations of this method is carefully analyzed. This scheme can be easily accomplished by any commercial confocal microscope systems, expands the function of them, and is of promising potential for simultaneous confocal microscopy and in vivo detection of cells in blood vessels of live animals by a single system.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Leqi Ding
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jingsheng Yan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jin Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| |
Collapse
|
15
|
Zhang X, Jiang X, Wang W, Luo S, Guan S, Li W, Situ B, Li B, Zhang Y, Zheng L. A simple and sensitive electrochemical biosensor for circulating tumor cell determination based on dual-toehold accelerated catalytic hairpin assembly. Mikrochim Acta 2023; 190:65. [PMID: 36692585 DOI: 10.1007/s00604-023-05649-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023]
Abstract
Tumor cells in blood circulation (CTCs) are vital biomarkers for noninvasive cancer diagnosis. We developed a simple and sensitive electrochemical biosensor based on dual-toehold accelerated catalytic hairpin assembly (DCHA) to distinguish CTCs from blood cells. In the presence of CTCs, the aptamer probe initiates the DCHA process, which produces amplified electrochemical signals. Compared with conventional catalytic hairpin assembly (CHA), the proposed DCHA showed high sensitivity, which led to a broader working range of 10-1000 cells mL-1 with a limit of detection of 4 cells mL-1. Furthermore, our method exhibited an excellent capability of distinguishing malignant breast cancers from healthy people, with a sensitivity of 97.4%. In summary, we have established an enzyme-free, easy-to-operate, and nondisruptive method for detecting circulating tumor cells in blood circulation based on the DCHA strategy. Its versatility and simplicity will make it more widely used in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Xiaohe Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiujuan Jiang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen Wang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, 518003, Guangdong Province, China
| | - Shihua Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shujuan Guan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University, (The First People's Hospital of Shunde), Foshan, 528300, Guangdong Province, China. .,Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
16
|
Pace J, Ivich F, Marple E, Niedre M. Near-infrared diffuse in vivo flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220101GR. [PMID: 36114606 PMCID: PMC9478904 DOI: 10.1117/1.jbo.27.9.097002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Significance Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR fluorescence molecular contrast agents. Aim We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow phantoms in vitro and in mice in vivo. Approach We developed an improved optical fiber probe design for efficient collection of fluorescence from individual circulating cells and efficient rejection of instrument autofluorescence. We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells. Results NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower autofluorescence and false-alarm rates than blue-green DiFC. Conclusions NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the way for future use of NIR-DiFC in humans.
Collapse
Affiliation(s)
- Joshua Pace
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Fernando Ivich
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Eric Marple
- EmVision LLC, Loxahatchee, Florida, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| |
Collapse
|
17
|
Vora N, Shekhar P, Esmail M, Patra A, Georgakoudi I. Label-free flow cytometry of rare circulating tumor cell clusters in whole blood. Sci Rep 2022; 12:10721. [PMID: 35750889 PMCID: PMC9232518 DOI: 10.1038/s41598-022-14003-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a machine learning model for peak detection/classification, we demonstrated that the combined use of backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established through BSFC and machine learning demonstrates the potential for label-free detection and monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption and ultimately their detection in vivo.
Collapse
Affiliation(s)
- Nilay Vora
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Prashant Shekhar
- Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA
| | - Michael Esmail
- Tufts Comparative Medicine Services, Tufts University, Medford, MA, 02155, USA
| | - Abani Patra
- Department of Computer Science, Tufts University, Medford, MA, 02155, USA
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
18
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
19
|
Niedre M. Prospects for Fluorescence Molecular In Vivo Liquid Biopsy of Circulating Tumor Cells in Humans. FRONTIERS IN PHOTONICS 2022; 3:910035. [PMID: 39508030 PMCID: PMC11540420 DOI: 10.3389/fphot.2022.910035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Our team recently developed "Diffuse in vivo Flow Cytometry" (DiFC) for detection and enumeration rare circulating tumor cells (CTCs) in mice with highly-scattered fluorescent light. We have used DiFC to study dissemination of CTCs in a number of mouse models of metastasis with fluorescent protein expressing cells. Because DiFC uses diffuse light and interrogates large blood vessels in relatively deep tissue, in principle it could be translated to larger limbs, species, and even humans clinically. In this perspective, we discuss the technical challenges of human translation of DiFC in the context of the current state of the technology, as well as potential strategies for labeling of CTCs with targeted fluorescent molecular probes. We also discuss potential advantages and disadvantages of DiFC as a clinical tool. In principle, DiFC could represent a powerful complementary technique (to liquid biopsy blood draws) for accurate and sensitive measurement of changes in CTC numbers over time.
Collapse
Affiliation(s)
- Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
20
|
Chícharo A, Caetano DM, Cardoso S, Freitas P. Evolution in Automatized Detection of Cells: Advances in Magnetic Microcytometers for Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:413-444. [DOI: 10.1007/978-3-031-04039-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Hamza B, Miller AB, Meier L, Stockslager M, Ng SR, King EM, Lin L, DeGouveia KL, Mulugeta N, Calistri NL, Strouf H, Bray C, Rodriguez F, Freed-Pastor WA, Chin CR, Jaramillo GC, Burger ML, Weinberg RA, Shalek AK, Jacks T, Manalis SR. Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nat Commun 2021; 12:5680. [PMID: 34584084 PMCID: PMC8479082 DOI: 10.1038/s41467-021-25917-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
Existing preclinical methods for acquiring dissemination kinetics of rare circulating tumor cells (CTCs) en route to forming metastases have not been capable of providing a direct measure of CTC intravasation rate and subsequent half-life in the circulation. Here, we demonstrate an approach for measuring endogenous CTC kinetics by continuously exchanging CTC-containing blood over several hours between un-anesthetized, tumor-bearing mice and healthy, tumor-free counterparts. By tracking CTC transfer rates, we extrapolated half-life times in the circulation of between 40 and 260 s and intravasation rates between 60 and 107,000 CTCs/hour in mouse models of small-cell lung cancer (SCLC), pancreatic ductal adenocarcinoma (PDAC), and non-small cell lung cancer (NSCLC). Additionally, direct transfer of only 1-2% of daily-shed CTCs using our blood-exchange technique from late-stage, SCLC-bearing mice generated macrometastases in healthy recipient mice. We envision that our technique will help further elucidate the role of CTCs and the rate-limiting steps in metastasis.
Collapse
MESH Headings
- Animals
- Blood Transfusion/methods
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Humans
- Kinetics
- Lung Neoplasms/blood
- Lung Neoplasms/pathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Metastasis
- Neoplastic Cells, Circulating/pathology
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/pathology
- Propensity Score
- RNA-Seq/methods
- Single-Cell Analysis/methods
- Small Cell Lung Carcinoma/blood
- Small Cell Lung Carcinoma/pathology
- Mice
Collapse
Affiliation(s)
- Bashar Hamza
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex B Miller
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lara Meier
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Max Stockslager
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Rong Ng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M King
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kelsey L DeGouveia
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Wentworth Institute of Technology, Boston, MA, USA
| | - Nolawit Mulugeta
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas L Calistri
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haley Strouf
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher R Chin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel C Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Megan L Burger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Weinberg
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Alex K Shalek
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
- Department of Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
22
|
Patil RA, Srinivasarao M, Amiji MM, Low PS, Niedre M. Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Mol Imaging Biol 2021; 22:1280-1289. [PMID: 32519245 DOI: 10.1007/s11307-020-01505-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We recently developed a new instrument called "diffuse in vivo flow cytometry" (DiFC) for enumeration of rare fluorescently labeled circulating tumor cells (CTCs) in small animals without drawing blood samples. Until now, we have used cell lines that express fluorescent proteins or were pre-labeled with a fluorescent dye ex vivo. In this work, we investigated the use of a folate receptor (FR)-targeted fluorescence molecular probe for in vivo labeling of FR+ CTCs for DiFC. PROCEDURES We used EC-17, a FITC-folic acid conjugate that has been used in clinical trials for fluorescence-guided surgery. We studied the affinity of EC-17 for FR+ L1210A and KB cancer cells. We also tested FR- MM.1S cells. We tested the labeling specificity in cells in culture in vitro and in whole blood. We also studied the detectability of labeled cells in mice in vivo with DiFC. RESULTS EC-17 showed a high affinity for FR+ L1210A and KB cells in vitro. In whole blood, 85.4 % of L1210A and 80.9 % of KB cells were labeled above non-specific background with EC-17, and negligible binding to FR- MM.1S cells was observed. In addition, EC-17-labeled CTCs were readily detectable in circulation in mice with DiFC. CONCLUSIONS This work demonstrates the feasibility of labeling CTCs with a cell-surface receptor-targeted probe for DiFC, greatly expanding the potential utility of the method for pre-clinical animal models. Because DiFC uses diffuse light, this method could be also used to enumerate CTCs in larger animal models and potentially even in humans.
Collapse
Affiliation(s)
- Roshani A Patil
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Abstract
In vivo flow cytometry (IVFC) was first designed to detect circulating cells in a mouse ear. It allows real-time monitoring of cells in peripheral blood with no need to draw blood. The IVFC field has made great progress during the last decade with the development of fluorescence, photoacoustic, and multiphoton microscopy. Moreover, the application of IVFC is no longer restricted to circulating cells. IVFC based on fluorescence and photoacoustic are most widely applied in biomedical research. Methods based on fluorescence are often used for object monitoring in superficial vessels, while methods based on photoacoustics have an advantage of label-free monitoring in deep vessels. In this chapter, we introduce technical points and key applications of IVFC. We focus on the principles, labeling strategies, sensitivity, and biomedical applications of the technology. In addition, we summarize this chapter and discuss important research directions of IVFC in the future.
Collapse
|
24
|
Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X. In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells. LIGHT, SCIENCE & APPLICATIONS 2021; 10:110. [PMID: 34045431 PMCID: PMC8160330 DOI: 10.1038/s41377-021-00542-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 05/13/2023]
Abstract
Circulating tumor cells (CTCs) is an established biomarker of cancer metastasis. The circulation dynamics of CTCs are important for understanding the mechanisms underlying tumor cell dissemination. Although studies have revealed that the circadian rhythm may disrupt the growth of tumors, it is generally unclear whether the circadian rhythm controls the release of CTCs. In clinical examinations, the current in vitro methods for detecting CTCs in blood samples are based on a fundamental assumption that CTC counts in the peripheral blood do not change significantly over time, which is being challenged by recent studies. Since it is not practical to draw blood from patients repeatedly, a feasible strategy to investigate the circadian rhythm of CTCs is to monitor them by in vivo detection methods. Fluorescence in vivo flow cytometry (IVFC) is a powerful optical technique that is able to detect fluorescent circulating cells directly in living animals in a noninvasive manner over a long period of time. In this study, we applied fluorescence IVFC to monitor CTCs noninvasively in an orthotopic mouse model of human prostate cancer. We observed that CTCs exhibited stochastic bursts over cancer progression. The probability of the bursting activity was higher at early stages than at late stages. We longitudinally monitored CTCs over a 24-h period, and our results revealed striking daily oscillations in CTC counts that peaked at the onset of the night (active phase for rodents), suggesting that the release of CTCs might be regulated by the circadian rhythm.
Collapse
Affiliation(s)
- Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, 100871, Beijing, China.
- School of Life Sciences, Peking University, 100871, Beijing, China.
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Nan Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Kai Pang
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China
| | - Chengying Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Meilu Tian
- Biomedical Engineering Department, Peking University, 100081, Beijing, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
- Biomedical Engineering Department, Peking University, 100081, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142, Beijing, China.
| |
Collapse
|
25
|
Weng X, Wei D, Zhu X, Tao L, Guo J, Pang K, Yang Z, Wei X. Real-time monitoring of single circulating tumor cells with a fluorescently labeled deoxy-glucose by in vivo flow cytometry. Cytometry A 2021; 99:586-592. [PMID: 33797159 DOI: 10.1002/cyto.a.24344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in metastasis and serve as an important prognostic biomarker. The technology of CTC labeling and detection in vivo can greatly improve the research of cancer metastasis and therapy. However, there is no in vivo technology to detect CTCs in clinic. In this study, we demonstrate that 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG), a 2-deoxy-glucose analog, can work in vivo to indicate CTCs and metastases fluorescently by direct intravenous injection. During the development of an implanted tumor in mice, the spontaneous CTCs released from the primary tumor into blood vessels can be labeled by 2-NBDG due to the abnormal metabolism of CTCs. The green fluorescence of 2-NBDG from CTCs is then noninvasively detected by an in vivo flow cytometry system. Due to the high uptake of glucose by tumor cells, the CTCs in mice can maintain a high 2-NBDG level and thus be distinguished by 2-NBDG fluorescence in vivo efficiently, enabling tumor detection in vivo like positron emission tomography (PET) but at the single-cell resolution. Our results suggest 2-NBDG, a glucose analog with high biosafety, holds promising potential in clinical applications, similar to the widely-used contrast medium 2-F18 -fluorodeoxyglucose in PET.
Collapse
Affiliation(s)
- Xiaofu Weng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wei
- Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhejiang, China
| | - Xi Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lechan Tao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, China
| | - Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zhangru Yang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Biomedical Engineering Department, Peking University, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
26
|
Pang W, Ding S, Lin L, Wang C, Lei M, Xu J, Wang X, Qu J, Wei X, Gu B. Noninvasive and real-time monitoring of Au nanoparticle promoted cancer metastasis using in vivo flow cytometry. BIOMEDICAL OPTICS EXPRESS 2021; 12:1846-1857. [PMID: 33996202 PMCID: PMC8086442 DOI: 10.1364/boe.420123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Cancer is the second leading cause of mortality globally, while cancer metastasis, which accounts for about 90% of cancer-related mortality, presents an extremely poor prognosis. Thus, various nanomedicines were designed and synthesized for cancer treatment, but nanomaterials could lead to endothelial leakiness and consequently facilitate intravasation and extravasation of cancer cells to form circulating tumor cells (CTCs), which were regarded as the potential metastatic seeds, possibly accelerating cancer metastasis. Neither possible metastatic sites were observed nor rare CTCs could be measured using common methods at the early stage of cancer metastasis, it is urgent to explore new technology to dynamically monitor nanomedicine promoted cancer metastasis with high sensitivity, which would be beneficial for cancer treatment as well as design and synthesis of nanomedicine. Herein, a novel optical biopsy tool i.e. in vivo flow cytometry (IVFC) was constructed to noninvasively and real-time monitor CTCs of tumor-bearing mice treated with various concentrations of Au nanoparticles. The in vivo experimental results demonstrated the promoted CTCs were Au nanoparticles dose-dependent consistent with the in vitro results, which showed Au nanoparticles induced dose-dependent gaps in the blood vessel endothelial walls to accelerate CTCs formation, making IVFC a promising biopsy tool in fundamental, pre-clinical and clinical investigation of nanomedicine and cancer metastasis.
Collapse
Affiliation(s)
- Wen Pang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Contributed equally to this work
| | - Shihui Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Contributed equally to this work
| | - Liyun Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chen Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Man Lei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiale Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xintong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xunbin Wei
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Biomedical Engineering Department, Peking University, Beijing 100081, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Bobo Gu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
27
|
Williams AL, Fitzgerald JE, Ivich F, Sontag ED, Niedre M. Short-Term Circulating Tumor Cell Dynamics in Mouse Xenograft Models and Implications for Liquid Biopsy. Front Oncol 2020; 10:601085. [PMID: 33240820 PMCID: PMC7677561 DOI: 10.3389/fonc.2020.601085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Circulating tumor cells (CTCs) are widely studied using liquid biopsy methods that analyze fractionally-small peripheral blood (PB) samples. However, little is known about natural fluctuations in CTC numbers that may occur over short timescales in vivo, and how these may affect detection and enumeration of rare CTCs from small blood samples. METHODS We recently developed an optical instrument called "diffuse in vivo flow cytometry" (DiFC) that uniquely allows continuous, non-invasive counting of rare, green fluorescent protein expressing CTCs in large blood vessels in mice. Here, we used DiFC to study short-term changes in CTC numbers in multiple myeloma and Lewis lung carcinoma xenograft models. We analyzed CTC detections in over 100 h of DiFC data, and considered intervals corresponding to approximately 1%, 5%, 10%, and 20% of the PB volume. In addition, we analyzed changes in CTC numbers over 24 h (diurnal) periods. RESULTS For rare CTCs (fewer than 1 CTC per ml of blood), the use of short DiFC intervals (corresponding to small PB samples) frequently resulted in no detections. For more abundant CTCs, CTC numbers frequently varied by an order of magnitude or more over the time-scales considered. This variance in CTC detections far exceeded that expected by Poisson statistics or by instrument variability. Rather, the data were consistent with significant changes in mean numbers of CTCs on the timescales of minutes and hours. CONCLUSIONS The observed temporal changes can be explained by known properties of CTCs, namely, the continuous shedding of CTCs from tumors and the short half-life of CTCs in blood. It follows that the number of cells in a blood sample are strongly impacted by the timing of the draw. The issue is likely to be compounded for multicellular CTC clusters or specific CTC subtypes, which are even more rare than single CTCs. However, we show that enumeration can in principle be improved by averaging multiple samples, analysis of larger volumes, or development of methods for enumeration of CTCs directly in vivo.
Collapse
Affiliation(s)
- Amber L. Williams
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | | | - Fernando Ivich
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eduardo D. Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
28
|
Kedarisetti P, Bouvet VR, Shi W, Bergman CN, Dufour J, Kashani Ilkhechi A, Bell KL, Paproski RJ, Lewis JD, Wuest FR, Zemp RJ. Enrichment and ratiometric detection of circulating tumor cells using PSMA- and folate receptor-targeted magnetic and surface-enhanced Raman scattering nanoparticles. BIOMEDICAL OPTICS EXPRESS 2020; 11:6211-6230. [PMID: 33282485 PMCID: PMC7687927 DOI: 10.1364/boe.410527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 06/12/2023]
Abstract
The presence of circulating tumor cells (CTCs) in a patient's bloodstream is a hallmark of metastatic cancer. The detection and analysis of CTCs is a promising diagnostic and prognostic strategy as they may carry useful genetic information from their derived primary tumor, and the enumeration of CTCs in the bloodstream has been known to scale with disease progression. However, the detection of CTCs is a highly challenging task owing to their sparse numbers in a background of billions of background blood cells. To effectively utilize CTCs, there is a need for an assay that can detect CTCs with high specificity and can locally enrich CTCs from a liquid biopsy. We demonstrate a versatile methodology that addresses these needs by utilizing a combination of nanoparticles. Enrichment is achieved using targeted magnetic nanoparticles and high specificity detection is achieved using a ratiometric detection approach utilizing multiplexed targeted and non-targeted surface-enhanced Raman Scattering Nanoparticles (SERS-NPs). We demonstrate this approach with model prostate and cervical circulating tumor cells and show the ex vivo utility of our methodology for the detection of PSMA or folate receptor over-expressing CTCs. Our approach allows for the mitigation of interference caused by the non-specific uptake of nanoparticles by other cells present in the bloodstream and our results from magnetically trapped CTCs reveal over a 2000% increase in targeted SERS-NP signal over non-specifically bound SERS-NPs.
Collapse
Affiliation(s)
- Pradyumna Kedarisetti
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Vincent R. Bouvet
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Wei Shi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Cody N. Bergman
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Afshin Kashani Ilkhechi
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Kevan L. Bell
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Robert J. Paproski
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Frank R. Wuest
- Department of Oncology, University of Alberta, Edmonton, AB, T6G 1Z2, Canada
| | - Roger J. Zemp
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
29
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
30
|
Ishbulatov YM, Skazkina VV, Karavaev AS, Inozemtseva OA, Bratashov DN, Abdurashitov AS, Grishin OV, Hramkov AN, Zharov VP. Comparing the spectral properties of the laser-induced acoustic responses from blood and cancer cells in vitro. RUSSIAN OPEN MEDICAL JOURNAL 2020. [DOI: 10.15275/rusomj.2020.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background ― The treatment of the cancer, especially in more aggressive metastatic forms is more effective at early disease stage. However, existing diagnostic techniques are not sensitive enough for early cancer detection. An alternative, perspective diagnostic approach can be based on photoacoustic (PA) method of irradiation of cancer cells in biotissue, blood and lymph by laser pulses. The fast thermal expansion of heated zones into cells associated with intrinsic or artificial PA contrast agents leads to generation of acoustic waves detected with ultrasound transducers. In particular, melanoma cells with melanin as a PA marker are darker than normal red blood cells and, therefore, produce greater acoustic responses. This technique can theoretically detect even a single cancer cell in the tissue and blood background; however, a robust algorithm of automated response detection is yet to be developed. Objective ― The main aim is to develop the approach for data pre-analysis that can improve the sensitivity and noise resistance of the automated in individual cancer cell detection algorithm, based on estimation of the amplitude of the acoustic responses. Methods ― Acoustic responses were obtained from a round polyurethane tube with human blood, or solution of the mouse melanoma cells in 10 mol/L concentration. In control experiments the laser was blocked by an opaque film. Many (up to 1000) acoustic responses were obtained from normal blood cells and pigmented cancer cells. Spectral analysis of the acoustic responses was used to find the spectral ranges that provide valuable diagnostic information with the sufficient signal-to-noise ratio. Results ― It was estimated that relevant diagnostics information in the acoustic responses is limited to the 0-12 MHz frequency band. Application of the 8th order low-pass Butterwort filter with 12 MHz cut-off frequency improved the signal-to-noise ratio from 21.14±10.39 to 110.81±56.94 for the cancer-related responses, and from 1.04±0.1 to 2.23±0.33 for the normal blood responses. Conclusions ― Adoption of low-pass filtering during the pre-analysis of acoustic responses results in better sensitivity of automated cancer cells detection algorithm.
Collapse
|
31
|
Bartosik PB, Fitzgerald JE, El Khatib M, Yaseen MA, Vinogradov SA, Niedre M. Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo. Int J Nanomedicine 2020; 15:1709-1719. [PMID: 32210561 PMCID: PMC7074808 DOI: 10.2147/ijn.s243157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
PURPOSE We recently developed a new fluorescence-based technique called "diffuse in vivo flow cytometry" (DiFC) for enumerating rare circulating tumor cells (CTCs) directly in the bloodstream. Non-specific tissue autofluorescence is a persistent problem, as it creates a background which may obscure signals from weakly-labeled CTCs. Here we investigated the use of upconverting nanoparticles (UCNPs) as a contrast agent for DiFC, which in principle could significantly reduce the autofluorescence background and allow more sensitive detection of rare CTCs. METHODS We built a new UCNP-compatible DiFC instrument (U-DiFC), which uses a 980 nm laser and detects upconverted luminescence in the 520, 545 and 660 nm emission bands. We used NaYF4:Yb,Er UCNPs and several covalent and non-covalent surface modification strategies to improve their biocompatibility and cell uptake. We tested U-DiFC with multiple myeloma (MM) and Lewis lung carcinoma (LLC) cells in tissue-mimicking optical flow phantoms and in nude mice. RESULTS U-DiFC significantly reduced the background autofluorescence signals and motion artifacts from breathing in mice. Upconverted luminescence from NaYF4:Yb,Er microparticles (UμNP) and cells co-incubated with UCNPs were readily detectable with U-DiFC in phantoms, and from UCNPs in circulation in mice. However, we were unable to achieve reliable labeling of CTCs with UCNPs. Our data suggest that most (or all) of the measured U-DIFC signal in vitro and in vivo likely arose from unbound UCNPs or due to the uptake by non-CTC blood cells. CONCLUSION UCNPs have a number of properties that make them attractive contrast agents for high-sensitivity detection of CTCs in the bloodstream with U-DiFC and other intravital imaging methods. More work is needed to achieve reliable and specific labeling of CTCs with UCNPs and verify long-term retention and viability of cells.
Collapse
Affiliation(s)
- Peter B Bartosik
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
32
|
Hai P, Qu Y, Li Y, Zhu L, Shmuylovich L, Cornelius LA, Wang LV. Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-17. [PMID: 32170857 PMCID: PMC7069252 DOI: 10.1117/1.jbo.25.3.036002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. AIM We aim to demonstrate label-free imaging of suspected melanoma CTCs. APPROACH We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. RESULTS With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. CONCLUSIONS We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma.
Collapse
Affiliation(s)
- Pengfei Hai
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Yuan Qu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yang Li
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Liren Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Leonid Shmuylovich
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| |
Collapse
|
33
|
Boateng F, Ngwa W. Delivery of Nanoparticle-Based Radiosensitizers for Radiotherapy Applications. Int J Mol Sci 2019; 21:ijms21010273. [PMID: 31906108 PMCID: PMC6981554 DOI: 10.3390/ijms21010273] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle-based radiosensitization of cancerous cells is evolving as a favorable modality for enhancing radiotherapeutic ratio, and as an effective tool for increasing the outcome of concomitant chemoradiotherapy. Nevertheless, delivery of sufficient concentrations of nanoparticles (NPs) or nanoparticle-based radiosensitizers (NBRs) to the targeted tumor without or with limited systemic side effects on healthy tissues/organs remains a challenge that many investigators continue to explore. With current systemic intravenous delivery of a drug, even targeted nanoparticles with great prospect of reaching targeted distant tumor sites, only a portion of the administered NPs/drug dosage can reach the tumor, despite the enhanced permeability and retention (EPR) effect. The rest of the targeted NPs/drug remain in systemic circulation, resulting in systemic toxicity, which can decrease the general health of patients. However, the dose from ionizing radiation is generally delivered across normal tissues to the tumor cells (especially external beam radiotherapy), which limits dose escalation, making radiotherapy (RT) somewhat unsafe for some diseased sites despite the emerging development in RT equipment and technologies. Since radiation cannot discriminate healthy tissue from diseased tissue, the radiation doses delivered across healthy tissues (even with nanoparticles delivered via systemic administration) are likely to increase injury to normal tissues by accelerating DNA damage, thereby creating free radicals that can result in secondary tumors. As a result, other delivery routes, such as inhalation of nanoparticles (for lung cancers), localized delivery via intratumoral injection, and implants loaded with nanoparticles for local radiosensitization, have been studied. Herein, we review the current NP delivery techniques; precise systemic delivery (injection/infusion and inhalation), and localized delivery (intratumoral injection and local implants) of NBRs/NPs. The current challenges, opportunities, and future prospects for delivery of nanoparticle-based radiosensitizers are also discussed.
Collapse
Affiliation(s)
- Francis Boateng
- TIDTAC LLC, Orlando, FL 32828, USA
- Correspondence: ; Tel.: +1-7745264723
| | - Wilfred Ngwa
- TIDTAC LLC, Orlando, FL 32828, USA
- Department of Physics and Applied Physics, University of Massachusetts Lowell Lowell, MA 01854, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Harrington WN, Nolan J, Nedosekin DA, Smeltzer MS, Zharov VP. Real-Time Monitoring of Bacteria Clearance From Blood in a Murine Model. Cytometry A 2019; 97:706-712. [PMID: 31769208 DOI: 10.1002/cyto.a.23925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
Bloodstream infections, especially those that are antibiotic resistant, pose a significant challenge to health care leading to increased hospitalization time and patient mortality. There are different facets to this problem that make these diseases difficult to treat, such as the difficulty to detect bacteria in the blood and the poorly understood mechanism of bacterial invasion into and out of the circulatory system. However, little progress has been made in developing techniques to study bacteria dynamics in the bloodstream. Here, we present a new approach using an in vivo flow cytometry platform for real-time, noninvasive, label-free, and quantitative monitoring of the lifespan of green fluorescent protein-expressing Staphylococcus aureus and Pseudomonas aeruginosa in a murine model. We report a relatively fast average rate of clearance for S. aureus (k = 0.37 ± 0.09 min-1 , half-life ~1.9 min) and a slower rate for P. aeruginosa (k = 0.07 ± 0.02 min-1 , half-life ~9.6 min). We also observed what appears to be two stages of clearance for S. aureus, while P. aeruginosa appeared only to have a single stage of clearance. Our results demonstrate that an advanced research tool can be used for studying the dynamics of bacteria cells directly in the bloodstream, providing insight into the progression of infectious diseases in circulation. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Walter N Harrington
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Jacqueline Nolan
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| | - Mark S Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences 4301 W. Markham, Slot 511, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, 4301 W. Markham St., Slot 543, Little Rock, Arkansas, 72205
| |
Collapse
|
35
|
Tang M, Xia HF, Xu CM, Feng J, Ren JG, Miao F, Wu M, Wu LL, Pang DW, Chen G, Zhang ZL. Magnetic Chip Based Extracorporeal Circulation: A New Tool for Circulating Tumor Cell in Vivo Detection. Anal Chem 2019; 91:15260-15266. [PMID: 31692331 DOI: 10.1021/acs.analchem.9b04286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vivo detection of circulating tumor cells (CTCs) which inspect all of the circulating blood in body seems to have more advantages on cell capture, especially in earlier cancer diagnosis. Herein, based on in vivo microfluidic chip detection system (IV-chip-system), an extracorporeal circulation was constructed to effectively detect and monitor CTCs in vivo. Combined with microfluidic chip and immunomagnetic nanosphere (IMN), this system not only acts as a window for CTC monitoring but also serves as a collector for further cancer diagnosis and research on CTCs. Compared with the current in vivo detection method, this system can capture and detect CTCs in the bloodstream without any pretreatments, and it also has a higher CTC capture efficiency. It is worth mentioning that this system is stable and biocompatible without any irreversible damage to living animals. Taking use of this system, the mimicked CTC cleanup process in the blood vessel is monitored, which may open new insights in cancer research and early cancer diagnosis.
Collapse
Affiliation(s)
- Man Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Chun-Miao Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jiao Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Fan Miao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Min Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Ling-Ling Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology , Wuhan University , Wuhan 430079 , People's Republic of China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , People's Republic of China
| |
Collapse
|
36
|
Cavalaro RI, Cruz RGD, Dupont S, de Moura Bell JMLN, Vieira TMFDS. In vitro and in vivo antioxidant properties of bioactive compounds from green propolis obtained by ultrasound-assisted extraction. FOOD CHEMISTRY-X 2019; 4:100054. [PMID: 31650128 PMCID: PMC6804792 DOI: 10.1016/j.fochx.2019.100054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
Abstract
Ultrasound improves the bioactives content from green propolis in a lower time. Optimization allowed good extraction of artepillin C and p-coumaric acid. Green propolis had similar effects to synthetic antioxidant in emulsion systems. Green propolis did not change the S. cerevisiae membrane. Green propolis presents a potential source of bioactive compounds, responsible for its antioxidant capacity. The effects of ethanol concentration, solid-solvent ratio, and extraction time were evaluated in regard to the total phenolic content (TPC) and antioxidant capacity of the extracts by the use of central composite rotatable designs. Optimum extraction conditions lead to significant reduction of extraction time compared to conventional extraction methods. Under optimum conditions, extracts were composed of 1614.80 mg GAE. g−1 and 807 mg artepillin C. g−1. Extracts were effective in retarding the oxidation in oil-in-water emulsions subjected to accelerated tests. Green propolis extracts (up to 200 mg.kg−1) did not increase Saccharomyces cerevisiae cell damage after 4 h of exposure, indicating its antioxidant effect and potential innocuity. Results demonstrated the antioxidant properties of the propolis extract was similar or better than the ones from synthetic antioxidants and warrant further investigation to determine its potential industrial application.
Collapse
Affiliation(s)
- Renata Iara Cavalaro
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil
| | - Richtier Gonçalves da Cruz
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil.,Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Sebastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | | | - Thais Maria Ferreira de Souza Vieira
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, 13418-900 Piracicaba, São Paulo, Brazil.,Department of Food Science and Technology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
37
|
Wei D, Zeng X, Yang Z, Zhou Q, Weng X, He H, Gao W, Gu Z, Wei X. Visualizing Interactions of Circulating Tumor Cell and Dendritic Cell in the Blood Circulation Using In Vivo Imaging Flow Cytometry. IEEE Trans Biomed Eng 2019; 66:2521-2526. [DOI: 10.1109/tbme.2019.2891068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Patil R, Tan X, Bartosik P, Detappe A, Runnels JM, Ghobrial I, Lin CP, Niedre M. Fluorescence monitoring of rare circulating tumor cell and cluster dissemination in a multiple myeloma xenograft model in vivo. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31456386 PMCID: PMC6983486 DOI: 10.1117/1.jbo.24.8.085004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/05/2019] [Indexed: 05/20/2023]
Abstract
Circulating tumor cells (CTCs) are of great interest in cancer research because of their crucial role in hematogenous metastasis. We recently developed “diffuse in vivo flow cytometry” (DiFC), a preclinical research tool for enumerating extremely rare fluorescently labeled CTCs directly in vivo. In this work, we developed a green fluorescent protein (GFP)-compatible version of DiFC and used it to noninvasively monitor tumor cell numbers in circulation in a multiple myeloma (MM) disseminated xenograft mouse model. We show that DiFC allowed enumeration of CTCs in individual mice overtime during MM growth, with sensitivity below 1 CTC mL − 1 of peripheral blood. DiFC also revealed the presence of CTC clusters (CTCCs) in circulation to our knowledge for the first time in this model and allowed us to calculate CTCC size, frequency, and kinetics of shedding. We anticipate that the unique capabilities of DiFC will have many uses in preclinical study of metastasis, in particular, with a large number of GFP-expressing xenograft and transgenic mouse models.
Collapse
Affiliation(s)
- Roshani Patil
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Xuefei Tan
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
| | - Peter Bartosik
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Alexandre Detappe
- Dana Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, Boston, Massachusetts, United States
| | - Judith M. Runnels
- Massachusetts General Hospital and Harvard Medical School, Center for Systems Biology and Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Irene Ghobrial
- Dana Farber Cancer Institute, Harvard Medical School, Department of Medical Oncology, Boston, Massachusetts, United States
| | - Charles P. Lin
- Massachusetts General Hospital and Harvard Medical School, Center for Systems Biology and Wellman Center for Photomedicine, Boston, Massachusetts, United States
| | - Mark Niedre
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
- Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Mark Niedre, E-mail:
| |
Collapse
|
39
|
Yin F, Gu B, Li J, Panwar N, Liu Y, Li Z, Yong KT, Tang BZ. In vitro anticancer activity of AIEgens. Biomater Sci 2019; 7:3855-3865. [PMID: 31305807 DOI: 10.1039/c9bm00881k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorogens with aggregation-induced emission (AIE) characteristics (AIEgens) possess unique optical properties, design flexibility, and multi-functional capabilities and have established their niche as smart materials since their discovery in 2001. In recent years, AIEgens have found varied applications in sensing, imaging, and therapy in biomedical research. In this work, we systematically and comprehensively investigate the in vitro anticancer activity of AIEgens. We report the high cytotoxicity of AIEgens against cancer cells, especially against cancer stem cells (CSCs) which show high resistance to existing therapeutic drug regimens. Furthermore, we explore the role of AIEgens as novel image-guided chemotherapy agents that offer a new avenue for efficient cancer treatment.
Collapse
Affiliation(s)
- Feng Yin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jingxu Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yong Liu
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Ben Zhong Tang
- Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
40
|
Suo Y, Gu Z, Wei X. Advances of In Vivo Flow Cytometry on Cancer Studies. Cytometry A 2019; 97:15-23. [DOI: 10.1002/cyto.a.23851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Yuanzhen Suo
- Biomedical Pioneering Innovation CenterPeking University Beijing China
- School of Life SciencesPeking University Beijing China
| | - Zhenqin Gu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Xunbin Wei
- Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong University Shanghai China
- School of PhysicsFoshan University Foshan 52800 China
| |
Collapse
|
41
|
Longitudinal monitoring of cancer cell subpopulations in monolayers, 3D spheroids, and xenografts using the photoconvertible dye DiR. Sci Rep 2019; 9:5713. [PMID: 30952965 PMCID: PMC6450962 DOI: 10.1038/s41598-019-42165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/26/2019] [Indexed: 12/21/2022] Open
Abstract
A central challenge in cancer biology is the identification, longitudinal tracking, and -omics analysis of specific cells in vivo. To this aim, photoconvertible fluorescent dyes are reporters that are characterized by a set of excitation and emission spectra that can be predictably altered, resulting in a distinct optical signature following irradiation with a specific light source. One such dye, DiR, is an infrared fluorescent membrane probe that can irreversibly undergo such a switch. Here, we demonstrate a method using DiR for the spatiotemporal labeling of specific cells in the context of cancer cell monolayer cultures, 3D tumor spheroids, and in vivo melanoma xenograft models to monitor the proliferation of cellular subpopulations of interest over time. Importantly, the photoconversion process is performed in situ, supporting the pursuit of novel avenues of research in molecular pathology.
Collapse
|
42
|
Abstract
Circulating tumor cells (CTCs) are of great interest in cancer research, but methods for their enumeration remain far from optimal. We developed a new small animal research tool called “Diffuse in vivo Flow Cytometry” (DiFC) for detecting extremely rare fluorescently-labeled circulating cells directly in the bloodstream. The technique exploits near-infrared diffuse photons to detect and count cells flowing in large superficial arteries and veins without drawing blood samples. DiFC uses custom-designed, dual fiber optic probes that are placed in contact with the skin surface approximately above a major vascular bundle. In combination with a novel signal processing algorithm, DiFC allows counting of individual cells moving in arterial or venous directions, as well as measurement of their speed and depth. We show that DiFC allows sampling of the entire circulating blood volume of a mouse in under 10 minutes, while maintaining a false alarm rate of 0.014 per minute. In practice, this means that DiFC allows reliable detection of circulating cells below 1 cell per mL. Hence, the unique capabilities of DiFC are highly suited to biological applications involving very rare cell types such as the study of hematogenous cancer metastasis.
Collapse
|
43
|
Kuo CW, Chueh DY, Chen P. Real-time in vivo imaging of subpopulations of circulating tumor cells using antibody conjugated quantum dots. J Nanobiotechnology 2019; 17:26. [PMID: 30728024 PMCID: PMC6364392 DOI: 10.1186/s12951-019-0453-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The detection of circulating tumor cells (CTCs) is very important for cancer diagnosis. CTCs can travel from primary tumors through the circulation to form secondary tumor colonies via bloodstream extravasation. The number of CTCs has been used as an indicator of cancer progress. However, the population of CTCs is very heterogeneous. It is very challenging to identify CTC subpopulations such as cancer stem cells (CSCs) with high metastatic potential, which are very important for cancer diagnostic management. RESULTS We report a study of real-time CTC and CSC imaging in the bloodstreams of living animals using multi-photon microscopy and antibody conjugated quantum dots. We have developed a cancer model for noninvasive imaging wherein pancreatic cancer cells expressing fluorescent proteins were subcutaneously injected into the earlobes of mice and then formed solid tumors. When the cancer cells broke away from the solid tumor, CTCs with fluorescent proteins in the bloodstream at different stages of development could be monitored noninvasively in real time. The number of CTCs observed in the blood vessels could be correlated to the tumor size in the first month and reached a maximum value of approximately 100 CTCs/min after 5 weeks of tumor inoculation. To observe CTC subpopulations, conjugated quantum dots were used. It was found that cluster of differentiation (CD)24+ CTCs can move along the blood vessel walls and migrate to peripheral tissues. CD24+ cell accumulation on the solid tumors' sides was observed, which may provide valuable insight for designing new drugs to target cancer subpopulations with high metastatic potential. We also demonstrated that our system is capable of imaging a minor population of cancer stem cells, CD133+ CTCs, which are found in 0.7% of pancreatic cancer cells and 1%-3% of solid tumors in patients. CONCLUSIONS With the help of quantum dots, CTCs with higher metastatic potential, such as CD24+ and CD133+ CTCs, have been identified in living animals. Using our approach, it may be possible to investigate detailed metastatic mechanism such as tumor cell extravasation to the blood vessels. In addition, the number of observed CTCs in the blood stream could be correlated with tumor stage in the early stage of cancer.
Collapse
Affiliation(s)
- Chiung Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
44
|
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A 2019; 116:2232-2236. [PMID: 30674677 PMCID: PMC6369805 DOI: 10.1073/pnas.1814102116] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks. The system is based on a microfluidic cell sorting chip connected serially to an unanesthetized mouse via an implanted arteriovenous shunt. Pneumatically controlled microfluidic valves capture CTCs as they flow through the device, and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over 4 days of treatment with the BET inhibitor JQ1 using single-cell RNA sequencing (scRNA-Seq) and show that our approach eliminates potential biases driven by intermouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs evolve over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis.
Collapse
|
45
|
Hu Y, Tang W, Cheng P, Zhou Q, Tian X, Wei X, He H. Monitoring circulating tumor cells in vivo by a confocal microscopy system. Cytometry A 2018; 95:657-663. [DOI: 10.1002/cyto.a.23702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Yuhao Hu
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Wanyi Tang
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Pan Cheng
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Quanyu Zhou
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Xiaoying Tian
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Xunbin Wei
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| | - Hao He
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai, 200030 China
| |
Collapse
|
46
|
Nolan J, Nedosekin DA, Galanzha EI, Zharov VP. Detection of Apoptotic Circulating Tumor Cells Using in vivo Fluorescence Flow Cytometry. Cytometry A 2018; 95:664-671. [PMID: 30508273 DOI: 10.1002/cyto.a.23642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Most cancer patients die from metastatic disease as a result of a circulating tumor cell (CTC) spreading from a primary tumor through the blood circulation to distant organs. Many studies have demonstrated the tremendous potential of using CTC counts as prognostic markers of metastatic development and therapeutic efficacy. However, it is only the viable CTCs capable of surviving in the blood circulation that can create distant metastasis. To date, little progress has been made in understanding what proportion of CTCs is viable and what proportion is in an apoptotic state. Here, we introduce a novel approach toward in situ characterization of CTC apoptosis status using a multicolor in vivo flow cytometry platform with fluorescent detection for the real-time identification and enumeration of such cells directly in blood flow. The proof of concept was demonstrated with two-color fluorescence flow cytometry (FFC) using breast cancer cells MDA-MB-231 expressing green fluorescein protein (GFP), staurosporine as an activator of apoptosis, Annexin-V apoptotic kit with orange dye color, and a mouse model. The future application of this new platform for real-time monitoring of antitumor drug efficiency is discussed. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jacqueline Nolan
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Dmitry A Nedosekin
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Ekaterina I Galanzha
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| | - Vladimir P Zharov
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205.,Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205
| |
Collapse
|
47
|
Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, Li X, Piper JA, Zhang F. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. NATURE NANOTECHNOLOGY 2018; 13:941-946. [PMID: 30082923 DOI: 10.1038/s41565-018-0221-0] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/04/2018] [Indexed: 05/04/2023]
Abstract
Deep tissue imaging in the second near-infrared (NIR-II) window holds great promise for physiological studies and biomedical applications1-6. However, inhomogeneous signal attenuation in biological matter7,8 hampers the application of multiple-wavelength NIR-II probes to multiplexed imaging. Here, we present lanthanide-doped NIR-II nanoparticles with engineered luminescence lifetimes for in vivo quantitative imaging using time-domain multiplexing. To achieve this, we have devised a systematic approach based on controlled energy relay that creates a tunable lifetime range spanning three orders of magnitude with a single emission band. We consistently resolve selected lifetimes from the NIR-II nanoparticle probes at depths of up to 8 mm in biological tissues, where the signal-to-noise ratio derived from intensity measurements drops below 1.5. We demonstrate that robust lifetime coding is independent of tissue penetration depth, and we apply in vivo multiplexing to identify tumour subtypes in living mice. Our results correlate well with standard ex vivo immunohistochemistry assays, suggesting that luminescence lifetime imaging could be used as a minimally invasive approach for disease diagnosis.
Collapse
Affiliation(s)
- Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - Peiyuan Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales, Australia.
| | - Rui Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - Xianlin Zheng
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales, Australia
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales, Australia
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Wei D, Pang K, Song Q, Suo Y, He H, Weng X, Gao X, Wei X. Noninvasive monitoring of nanoparticle clearance and aggregation in blood circulation by in vivo flow cytometry. J Control Release 2018; 278:66-73. [PMID: 29625160 DOI: 10.1016/j.jconrel.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Nanoparticles have been widely used in biomedical research as drug carriers or imaging agents for living animals. Blood circulation is crucial for the delivery of nanoparticles, which enter the bloodstream through injection, inhalation, or dermal exposure. However, the clearance kinetics of nanoparticles in blood circulation has been poorly studied, mainly because of the limitations of conventional detection methods, such as insufficient blood sample volumes or low spatial-temporal resolution. In addition, formation of nanoparticle aggregates is a key determinant for biocompatibility and drug delivery efficiency. Aggregation behavior of nanoparticles in blood is studied using dynamic light scattering in serum or serum protein solutions, which is still very different from in vivo condition. In this work, we monitored the dynamics of nanoparticle concentration and formation of nanoparticle aggregates in the bloodstream in live animals using in vivo flow cytometry (IVFC). The results indicated that nanoparticles in smaller size could stay longer in the bloodstream. Polyethylene glycol (PEG)-modification could prolong circulating time and reduce the formation of aggregates in the blood circulation. Our work shows that IVFC can be a powerful tool for pharmacokinetic studies of nanoparticles and other drug carriers, assessing cell-targeting efficiency, as well as potentially measuring cardiac output and hepatic function in vivo.
Collapse
Affiliation(s)
- Dan Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kai Pang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuanzhen Suo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Department of Chemistry and Chemical Biology, Harvard University, Cambridge 02138, USA
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Faculty of Basic Medicine, School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, China.
| |
Collapse
|
49
|
White MD, Zhao ZW, Plachta N. In Vivo Imaging of Single Mammalian Cells in Development and Disease. Trends Mol Med 2018; 24:278-293. [PMID: 29439932 DOI: 10.1016/j.molmed.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
Live imaging has transformed biomedical sciences by enabling visualization and analysis of dynamic cellular processes as they occur in their native contexts. Here, we review key recent efforts applying in vivo optical imaging with single-cell resolution to mammalian systems ranging from embryos to adult tissues and organs. We highlight insights into active processes regulating cell fate and morphogenesis during embryonic development, how neuronal circuitry and non-neuronal cell types contribute to neurological functions, and how novel imaging-based approaches enable the dissection of neurological disorders and cancer with high spatio-temporal resolution. The convergence of technical advancements in accessing, visualizing, and manipulating individual cells provides an unprecedented lens to probe mammalian cellular dynamics in vivo in both physiological and pathological states.
Collapse
Affiliation(s)
- Melanie D White
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Ziqing W Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; These authors contributed equally to this work
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
50
|
Hartmann C, Patil R, Lin CP, Niedre M. Fluorescence detection, enumeration and characterization of single circulating cells in vivo: technology, applications and future prospects. Phys Med Biol 2017; 63:01TR01. [PMID: 29240559 DOI: 10.1088/1361-6560/aa98f9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many diseases and biological processes that involve circulating cells in the bloodstream, such as cancer metastasis, immunology, reproductive medicine, and stem cell therapies. This has driven significant interest in new technologies for the study of circulating cells in small animal research models and clinically. Most currently used methods require drawing and enriching blood samples from the body, but these suffer from a number of limitations. In contrast, 'in vivo flow cytometry' (IVFC) refers to set of technologies that allow study of cells directly in the bloodstream of the organism in vivo. In recent years the IVFC field has grown significantly and new techniques have been developed, including fluorescence microscopy, multi-photon, photo-acoustic, and diffuse fluorescence IVFC. In this paper we review recent technical advances in IVFC, with emphasis on instrumentation, contrast mechanisms, and detection sensitivity. We also describe key applications in biomedical research, including cancer research and immunology. Last, we discuss future directions for IVFC, as well as prospects for broader adoption by the biomedical research community and translation to humans clinically.
Collapse
Affiliation(s)
- Carolin Hartmann
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States of America. Institute of Hydrochemistry, Technical University of Munich, Munich, Germany
| | | | | | | |
Collapse
|