1
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
2
|
Feng J, Leng J, Zhao C, Guo J, Chen Y, Li H. High expression of 14-3-3ơ indicates poor prognosis and progression of lung adenocarcinoma. Oncol Lett 2022; 24:203. [PMID: 35720477 PMCID: PMC9178702 DOI: 10.3892/ol.2022.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. 14-3-3ơ is an intracellular phosphoserine-binding protein that has been proposed to be involved in tumorigenesis. However, the biofunctional role of 14-3-3ơ and its clinicopathological/prognostic significance in LUAD have remained elusive. In the present study, western blot and immunohistochemical analyses of cancer tissues/cells and the corresponding normal controls were performed to verify that 14-3-3ơ was upregulated in LUAD. Univariate and multivariate logistic regression analysis indicated that high expression of 14-3-3ơ predicted poor overall survival and progression-free survival of patients with LUAD. Furthermore, in vivo and in vitro experiments demonstrated that overexpression of 14-3-3ơ markedly promoted cell proliferation, colony formation, anchorage-independent growth and tumor growth, whereas 14-3-3ơ depletion produced the opposite effects. Of note, 14-3-3ơ was identified as an independent prognostic factor for patients with LUAD. Collectively, the present results revealed that high expression of 14-3-3ơ may serve as an independent biomarker, contributing to poor prognosis and progression of LUAD.
Collapse
Affiliation(s)
- Junfei Feng
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Jing Leng
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Changdi Zhao
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Jie Guo
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yongbing Chen
- Department of Respiratory Medicine, People's Hospital of Beilun District, Ningbo, Zhejiang 315826, P.R. China
| | - Haifeng Li
- Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| |
Collapse
|
3
|
Wang X, Zhou Y, Wang C, Zhao Y, Cheng Y, Yu S, Li X, Zhang W, Zhang Y, Quan H. HCV Core protein represses DKK3 expression via epigenetic silencing and activates the Wnt/β-catenin signaling pathway during the progression of HCC. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1998-2009. [PMID: 35768685 DOI: 10.1007/s12094-022-02859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The Wnt/β-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). A number of studies have focused on the aberrant hypermethylation of the DKK family proteins and its role in regulating the activation of specific signaling pathways. However, the exact way by which DKK regulates the signaling pathway caused by Core protein of HCV has not been reported. In the present study, we evaluated the expression level of DKK and its aberrant promoter methylation to investigate the involvement of epigenetic regulation in hepatoma cell lines. The transcription and protein expression of DKK1 was significantly increased, whereas the transcription and protein expression levels of DKK2, DKK3, and DKK4 were significantly decreased following overexpression of Core protein. Pyrosequencing indicated that hypermethylation of DKK3 was increased. This was associated with increased expression of Dnmt1. The investigation of the molecular mechanism indicated that HCV Core protein interacted with Dnmt1, which combined with the promoter of DKK3, leading to methylation of DKK3. Functional studies indicated that Core protein promoted the growth, migration and invasion of cancer cells. However, upregulation of the expression of DKK3 and/or the knockdown of the expression of Dnmt1 inhibited the growth, migration and invasion of cancer cells. Taken together, the data indicated that epigenetic silencing of DKK3 caused by Dnmt1 activated the Wnt/β-catenin pathway in HCV Core-mediated HCC. Therefore, DKK3 may be a potential diagnostic and therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yanyan Zhao
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Cheng
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Suhuai Yu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenjing Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Huiqin Quan
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
4
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
5
|
Yao J, Li G, Liu M, Yang S, Su H, Ye C. lnc‑MICAL2‑1 sponges miR‑25 to regulate DKK3 expression and inhibits activation of the Wnt/β‑catenin signaling pathway in breast cancer. Int J Mol Med 2022; 49:23. [PMID: 34970696 DOI: 10.3892/ijmm.2021.5078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022] Open
Abstract
The Dickkopf 3 (DKK3) protein antagonizes the Wnt receptor complex in the Wnt signaling pathway; however, to date, there have been no relevant studies investigating its upstream regulatory mechanism in breast cancer (BC), to the best of our knowledge. The present study aimed to explore whether long non‑coding RNA MICAL2‑1 (lnc‑MICAL2‑1) sponged microRNA (miR)‑25 to regulate DKK3 and inhibit activation of the Wnt/β‑catenin signaling pathway. The Atlas of non‑coding RNA in Cancer database was used to measure the expression levels of lnc‑MICAL2‑1 and their correlation with DKK3 expression levels. In addition, cell proliferation, invasion and migration were determined following the silencing or overexpression of lnc‑MICAL2‑1. The binding between lnc‑MICAL2‑1 and miR‑25, or miR‑25 and DKK3 was verified using RNA pull‑down and dual‑luciferase reporter assays. The effects of overexpression or knockdown of lnc‑MICAL2‑1 on DKK3 expression and the Wnt signaling pathway were further evaluated in a nude mouse xenograft model. The results revealed that, compared with in adjacent normal tissue, the expression levels of lnc‑MICAL2‑1 were downregulated in BC tissues, and the expression levels of lnc‑MICAL2‑1 were found to be positively correlated with DKK3 expression. The overexpression of lnc‑MICAL2‑1 in BC cells upregulated the mRNA expression levels of DKK3 and inhibited their proliferation. Results from the RNA pull‑down and dual luciferase reporter assays validated that lnc‑MICAL2‑1 could bind to miR‑25, which targets DKK3. The in vivo experimental data demonstrated that lnc‑MICAL2‑1 inhibited tumor growth via regulating the Wnt signaling pathway. In conclusion, the findings of the present study highlighted a novel molecular mechanism through which lnc‑MICAL2‑1 may regulate the DKK3‑mediated Wnt signaling pathway in BC, highlighting potential targets for the treatment of the disease.
Collapse
Affiliation(s)
- Jia Yao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Guanqiao Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Minfeng Liu
- Department of General Surgery‑Breast Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| | - Shiping Yang
- Department of Radiotherapy, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Huiluan Su
- Department of Radiotherapy, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Changsheng Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510650, P.R. China
| |
Collapse
|
6
|
Validation of SFRP1 Promoter Hypermethylation in Plasma as a Prognostic Marker for Survival and Gemcitabine Effectiveness in Patients with Stage IV Pancreatic Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13225717. [PMID: 34830873 PMCID: PMC8616084 DOI: 10.3390/cancers13225717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pancreatic adenocarcinoma (PDAC) is a disease with an incredibly grim prognosis. Most patients die within one year of receiving the diagnosis. There are currently very few tools to help the clinician decide between treatment options and evaluate prognosis at an individual level. The aim of the current study was to assess the effect of promoter hypermethylation of secreted frizzled-related protein 1 (phSFRP1) as an independent prognostic blood-based biomarker in gemcitabine-treated patients with advanced PDAC. The study was conducted as a combined discovery and validation study. Analysis in both cohorts confirmed that patients with phSFRP1 had overall poorer survival compared to those without hypermethylation. Thus, phSFRP1 shows promise as an independent prognostic biomarker in this patient group and can hopefully aid the clinician and patient find the correct balance between quantity and quality of life. Abstract No reliable predictive blood-based biomarkers are available for determining survival from pancreatic adenocarcinoma (PDAC). This combined discovery and validation study examines promoter hypermethylation (ph) of secreted frizzled-related protein 1 (SFRP1) in plasma-derived cell-free DNA as an independent prognostic marker for survival and Gemcitabine effectiveness in patients with stage IV PDAC. We conducted methylation-specific polymerase chain reaction analysis of the promoter region of the SFRP1 gene, based on bisulfite treatment. Survival was analyzed with Kaplan–Meier curves, log-rank test, and Cox regression. The discovery cohort included 40 patients, 25 receiving Gem. Gem-treated patients with phSFRP1 had a shorter median overall survival (mOS) (4.4 months) than unmethylated patients (11.6 months). Adjusted Cox-regression yielded a hazard rate (HR) of 3.48 (1.39–8.70). The validation cohort included 58 Gem-treated patients. Patients with phSFRP1 had a shorter mOS (3.2 months) than unmethylated patients (6.3 months). Adjusted Cox regression yielded an HR of 3.53 (1.85–6.74). In both cohorts, phSFRP1 was associated with poorer survival in Gem-treated patients. This may indicate that tumors with phSFRP1 are more aggressive and less sensitive to Gem treatment. This knowledge may facilitate tailored treatment of patients with stage IV PDAC. Further studies are planned to examine phSFRP1 in more intensive chemotherapy regimens.
Collapse
|
7
|
Bacolod MD. The Epigenetic Factors that Drive Cancer Drug Resistance. Curr Cancer Drug Targets 2021; 21:269-273. [PMID: 34112067 DOI: 10.2174/156800962104210527150438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| |
Collapse
|
8
|
Nirgude S, Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem Pharmacol 2020; 184:114365. [PMID: 33310051 DOI: 10.1016/j.bcp.2020.114365] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidases are well known antioxidant enzymes. They catalyze the reduction of hydrogen peroxide or organic hydroperoxides using glutathione. Among the reported 8 GPxs, GPx3, a highly conserved protein and a major ROS scavenger in plasma, has been well studied and confirmed to play a vital role as a tumor suppressor in most cancers. Additionally, this gene is known to be epigenetically regulated. It is downregulated either by hypermethylation or genomic deletion. In this review, we summarized the role of GPX3 in various cancers, its use as a prognostic biomarker, and a potential target for clinical intervention.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India; Registered as graduate student under Manipal Academy of Higher Education, Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100, India.
| |
Collapse
|
9
|
Cruz-Hernández CD, Cruz-Burgos M, Cortés-Ramírez SA, Losada-García A, Camacho-Arroyo I, García-López P, Langley E, González-Covarrubias V, Llaguno-Munive M, Albino-Sánchez ME, Cruz-Colín JL, Pérez-Plasencia C, Beltrán-Anaya FO, Rodríguez-Dorantes M. SFRP1 increases TMPRSS2-ERG expression promoting neoplastic features in prostate cancer in vitro and in vivo. Cancer Cell Int 2020; 20:312. [PMID: 32694934 PMCID: PMC7364616 DOI: 10.1186/s12935-020-01333-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Prostate cancer (PCa) is the second cause of cancer related death in North American men. Androgens play an important role in its progression by regulating the expression of several genes including fusion ones that results from structural chromosome rearrangements. TMPRSS2-ERG is a fusion gene commonly observed in over 50% of PCa tumors, and its expression can be transcriptionally regulated by the androgen receptor (AR) given its androgen responsive elements. TMPRSS2-ERG could be involved in epithelial–mesenchymal transition (EMT) during tumor development. ERG has been reported as a key transcriptional factor in the AR-ERG-WNT network where five SFRP proteins, structurally similar to WNT ligands and considered to be WNT pathway antagonists, can regulate signaling in the extracellular space by binding to WNT proteins or Frizzled receptors. It has been shown that over-expression of SFRP1 protein can regulate the transcriptional activity of AR and inhibits the formation of colonies in LNCaP cells. However, the effect of SFRP1 has been controversial since differential effects have been observed depending on its concentration and tissue location. In this study, we explored the role of exogenous SFRP1 protein in cells expressing the TMPRSS2-ERG fusion. Methods To evaluate the effect of exogenous SFRP1 protein on PCa cells expressing TMPRSS2-ERG, we performed in silico analysis from TCGA cohort, expression assays by RT-qPCR and Western blot, cell viability and cell cycle measurements by cytometry, migration and invasion assays by xCELLigance system and murine xenografts. Results We demonstrated that SFRP1 protein increased ERG expression by promoting cellular migration in vitro and increasing tumor growth in vivo in PCa cells with the TMPRSS2-ERG fusion. Conclusions These results suggest the possible role of exogenous SFRP1 protein as a modulator of AR-ERG-WNT signaling network in cells positive to TMPRSS2-ERG. Further, investigation is needed to determine if SFRP1 protein could be a target in against this type of PCa.
Collapse
Affiliation(s)
- Carlos D Cruz-Hernández
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Marian Cruz-Burgos
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Sergio A Cortés-Ramírez
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Alberto Losada-García
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México; (UNAM), 04510 Mexico City, Mexico
| | | | | | | | | | - Martha E Albino-Sánchez
- Departamento de Biología celular, CINVESTAV, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 Mexico city, Mexico
| | - José L Cruz-Colín
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | | | - Fredy O Beltrán-Anaya
- Instituto Nacional de Medicina Genómica, Périferico Sur 4809, Arenal Tepepan, 14610 Mexico city, Mexico
| | | |
Collapse
|
10
|
Izzo S, Naponelli V, Bettuzzi S. Flavonoids as Epigenetic Modulators for Prostate Cancer Prevention. Nutrients 2020; 12:E1010. [PMID: 32268584 PMCID: PMC7231128 DOI: 10.3390/nu12041010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is a multifactorial disease with an unclear etiology. Due to its high prevalence, long latency, and slow progression, PCa is an ideal target for chemoprevention strategies. Many research studies have highlighted the positive effects of natural flavonoids on chronic diseases, including PCa. Different classes of dietary flavonoids exhibit anti-oxidative, anti-inflammatory, anti-mutagenic, anti-aging, cardioprotective, anti-viral/bacterial and anti-carcinogenic properties. We overviewed the most recent evidence of the antitumoral effects exerted by dietary flavonoids, with a special focus on their epigenetic action in PCa. Epigenetic alterations have been identified as key initiating events in several kinds of cancer. Many dietary flavonoids have been found to reverse DNA aberrations that promote neoplastic transformation, particularly for PCa. The epigenetic targets of the actions of flavonoids include oncogenes and tumor suppressor genes, indirectly controlled through the regulation of epigenetic enzymes such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC). In addition, flavonoids were found capable of restoring miRNA and lncRNA expression that is altered during diseases. The optimization of the use of flavonoids as natural epigenetic modulators for chemoprevention and as a possible treatment of PCa and other kinds of cancers could represent a promising and valid strategy to inhibit carcinogenesis and fight cancer.
Collapse
Affiliation(s)
- Simona Izzo
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy; (S.I.); (S.B.)
- National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
11
|
Downregulation of SFRP1 is a protumorigenic event in hepatoblastoma and correlates with beta-catenin mutations. J Cancer Res Clin Oncol 2020; 146:1153-1167. [PMID: 32189106 PMCID: PMC7142044 DOI: 10.1007/s00432-020-03182-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Background Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are the most common malignant liver tumors in childhood. Both tumor types exhibit genetic and epigenetic alterations in the WNT/β-catenin signaling pathway, which is a key regulator of liver progenitor cells in embryonic development. The tumors demonstrate a high rate of β-catenin mutations and gene expression changes of several WNT antagonists. However, the role of the WNT inhibitory factor secreted frizzled-related protein 1 (SFRP1) has not been addressed in pediatric liver cancer so far. Results In our study, we investigated the gene expression level, DNA methylation status and functional relevance of SFRP1 in HB cell lines and in pediatric liver tumor patient samples. SFRP1 was downregulated due to DNA promoter methylation in all tested HB cell lines. Overexpression of SFRP1 in HB cell lines diminished tumor cell proliferation, colony formation and migration potential. In addition, the SFRP1-expressing HB cell lines showed reduced WNT/β-catenin signaling pathway activity and decreased expression of WNT target genes. To evaluate the utility of SFRP1 as a biomarker in pediatric liver cancer, we determined the gene expression level and DNA methylation status of SFRP1 in 45 pediatric liver tumor patient samples. The correlation analysis of different clinical parameters and tumor characteristics revealed a significant correlation of reduced SFRP1 expression with the presence of mutant β-catenin. The methylation status of SFRP1 was furthermore associated to a pediatric liver tumor type with HCC-like characteristics, TERT mutations and an older age at diagnosis. Conclusion Altogether, our data demonstrate that the epigenetic suppression of the WNT/β-catenin antagonist SFRP1 has an important impact on the malignant behavior of HB cells. Although SFRP1 methylation is a common event in HCC-like pediatric liver tumors, its potential as a prognostic or diagnostic biomarker needs to be further investigated. Electronic supplementary material The online version of this article (10.1007/s00432-020-03182-1) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Gondkar K, Patel K, Patil Okaly GV, Nair B, Pandey A, Gowda H, Kumar P. Dickkopf Homolog 3 (DKK3) Acts as a Potential Tumor Suppressor in Gallbladder Cancer. Front Oncol 2019; 9:1121. [PMID: 31737564 PMCID: PMC6828847 DOI: 10.3389/fonc.2019.01121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/19/2023] Open
Abstract
Gallbladder cancer (GBC) is a common malignancy of biliary tract cancers and its incidence has been rising rapidly worldwide. The prognosis for this disease is dismal as most of the symptoms are non-specific leading to a definitive diagnosis only at a late stage. Loss of DKK3 gene is associated with a possible tumor suppressor role in human cancers. The role and regulation of DKK3 in GBC have not been studied. We found that DKK3 expression levels were low in GBC patients and cell lines. Treatment of GBC cell lines with demethylating agent 5-Aza- 2'-deoxycytidine enhances its expression, establishing impact of methylation on DKK3 expression. We observed low expression of DKK3 in gallbladder adenocarcinoma tumors and highly invasive GBC cell lines. We showed that overexpression of DKK3 can decrease cell invasion, proliferation, and colony forming ability of GBC cells. Our data thus demonstrated the DKK3 gene is a potential tumor suppressor gene in GBC and aberrant promoter methylation could be involved in its downregulation, which may play a role in the tumorigenesis and aggressiveness of GBC.
Collapse
Affiliation(s)
- Kirti Gondkar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Geeta V Patil Okaly
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Akhilesh Pandey
- Manipal Academy of Higher Education, Manipal, India.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
13
|
Kamińska K, Białkowska A, Kowalewski J, Huang S, Lewandowska MA. Differential gene methylation patterns in cancerous and non‑cancerous cells. Oncol Rep 2019; 42:43-54. [PMID: 31115550 PMCID: PMC6549081 DOI: 10.3892/or.2019.7159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Large-scale projects, such as The Cancer Genome Atlas (TCGA), Human Epigenome Project (HEP) and Human Epigenome Atlas (HEA), provide an insight into DNA methylation and histone modification markers. Changes in the epigenome significantly contribute to the initiation and progression of cancer. The goal of the present study was to characterize the prostate cancer malignant transformation model using the CpG island methylation pattern. The Human Prostate Cancer EpiTect Methyl II Signature PCR Array was used to evaluate the methylation status of 22 genes in prostate cancer cell lines: PC3, PC3M, PC3MPro4 and PC3MLN4, each representing different metastatic potential in vivo. Subsequently, it was ascertained whether DNA methylation plays a role in the expression of these genes in prostate cancer cells. Hypermethylation of APC, DKK3, GPX3, GSTP1, MGMT, PTGS2, RASSF1, TIMP2 and TNFRSF10D resulted in downregulation of their expression in prostate cancer cell lines as compared to WT fibroblasts. Mining of the TCGA data deposited in the MetHC database found increases in the methylation status of these 9 genes in prostate cancer patients, further supporting the role of methylation in altering the expression of these genes in prostate cancer. Future studies are warranted to investigate the role of these proteins in prostate cancer development.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Aneta Białkowska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, The Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85‑796 Bydgoszcz, Poland
| | - Sui Huang
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marzena A Lewandowska
- Department of Molecular Oncology and Genetics, Innovative Medical Forum, The F. Lukaszczyk Oncology Center, Bydgoszcz, Poland
| |
Collapse
|
14
|
Bhattacharyya S, Feferman L, Tobacman JK. Dihydrotestosterone inhibits arylsulfatase B and Dickkopf Wnt signaling pathway inhibitor (DKK)-3 leading to enhanced Wnt signaling in prostate epithelium in response to stromal Wnt3A. Prostate 2019; 79:689-700. [PMID: 30801800 DOI: 10.1002/pros.23776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Leo Feferman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Joanne K Tobacman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| |
Collapse
|
15
|
Zhou C, Pan R, Li B, Huang T, Zhao J, Ying J, Duan S. GPX3 hypermethylation in gastric cancer and its prognostic value in patients aged over 60. Future Oncol 2019; 15:1279-1289. [PMID: 30924352 DOI: 10.2217/fon-2018-0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM This study investigated the association between GPX3 methylation and gastric cancer (GC), and explored its prognostic value in patients undergoing radical gastrectomy. MATERIALS & METHODS The methylation levels of tumor and paracancerous tissues were detected by quantitative methylation-specific PCR method. RESULTS GPX3 was hypermethylated in GC (p = 4E-4), and was specific for patients with lymphatic metastasis (+), tumor invasion depth >3 cm and patients with poor differentiation. Additionally, GPX3 hypermethylation predicts a tumor recurrence in patients aged >60 (p = 0.019). Data from The Cancer Genome Atlas (TCGA) further confirmed GPX3 hypermethylation (cg21504918: -0.08 vs -0.25, p = 0.001). Additionally, TCGA showed an inverse correlation between GPX3 methylation and expression (p = 7E-18, r = -0.427). Data analysis of Gene Expression Omnibus (GEO) database showed that 5-aza-2'-deoxycytidine demethylating agent increased GPX3 expression (fold-change >2.19, p = 0.001). CONCLUSION Our results indicated GPX3 hypermethylation in GC, and predicted a shorter tumor recurrence time in patients aged >60.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ranran Pan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Bin Li
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Tianyi Huang
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jun Zhao
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, PR China
| | - Shiwei Duan
- Medical Genetics Center, Department of Genetics, School of Medicine, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
16
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
17
|
Lin C, Salzillo TC, Bader DA, Wilkenfeld SR, Awad D, Pulliam TL, Dutta P, Pudakalakatti S, Titus M, McGuire SE, Bhattacharya PK, Frigo DE. Prostate Cancer Energetics and Biosynthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:185-237. [PMID: 31900911 PMCID: PMC8096614 DOI: 10.1007/978-3-030-32656-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancers must alter their metabolism to satisfy the increased demand for energy and to produce building blocks that are required to create a rapidly growing tumor. Further, for cancer cells to thrive, they must also adapt to an often changing tumor microenvironment, which can present new metabolic challenges (ex. hypoxia) that are unfavorable for most other cells. As such, altered metabolism is now considered an emerging hallmark of cancer. Like many other malignancies, the metabolism of prostate cancer is considerably different compared to matched benign tissue. However, prostate cancers exhibit distinct metabolic characteristics that set them apart from many other tumor types. In this chapter, we will describe the known alterations in prostate cancer metabolism that occur during initial tumorigenesis and throughout disease progression. In addition, we will highlight upstream regulators that control these metabolic changes. Finally, we will discuss how this new knowledge is being leveraged to improve patient care through the development of novel biomarkers and metabolically targeted therapies.
Collapse
Affiliation(s)
- Chenchu Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Travis C Salzillo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dominik Awad
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas L Pulliam
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|
18
|
Tungekar A, Mandarthi S, Mandaviya PR, Gadekar VP, Tantry A, Kotian S, Reddy J, Prabha D, Bhat S, Sahay S, Mascarenhas R, Badkillaya RR, Nagasampige MK, Yelnadu M, Pawar H, Hebbar P, Kashyap MK. ESCC ATLAS: A population wide compendium of biomarkers for Esophageal Squamous Cell Carcinoma. Sci Rep 2018. [PMID: 30143675 DOI: 10.1038/s41598-018-30579-3,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.
Collapse
Affiliation(s)
- Asna Tungekar
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Sumana Mandarthi
- Mbiomics, Manipal, Karnataka, India.,Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Pooja Rajendra Mandaviya
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Veerendra P Gadekar
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.,Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria
| | - Ananthajith Tantry
- Mbiomics, Manipal, Karnataka, India.,Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
| | - Sowmya Kotian
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Jyotshna Reddy
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Sushma Bhat
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Roshan Mascarenhas
- Mbiomics, Manipal, Karnataka, India.,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.,Newcastle University Medicine Malaysia, Johor Bahru, 79200, Malaysia
| | - Raghavendra Rao Badkillaya
- Mbiomics, Manipal, Karnataka, India.,Department of Biotechnology, Alva's college, Moodubidre, Karnataka, India
| | - Manoj Kumar Nagasampige
- Mbiomics, Manipal, Karnataka, India.,Department of Biotechnology, Sikkim Manipal University, Gangtok, Sikkim, 737102, India
| | - Mohan Yelnadu
- Mbiomics, Manipal, Karnataka, India.,Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India.,Infosys Technologies Ltd, Bangalore, Karnataka, India.,Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Harsh Pawar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Prashantha Hebbar
- Mbiomics, Manipal, Karnataka, India. .,Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.
| | - Manoj Kumar Kashyap
- Mbiomics, Manipal, Karnataka, India. .,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India. .,School of Life and Allied Health Sciences, Glocal University, Saharanpur, Uttar Pradesh, 247001, India. .,Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Tungekar A, Mandarthi S, Mandaviya PR, Gadekar VP, Tantry A, Kotian S, Reddy J, Prabha D, Bhat S, Sahay S, Mascarenhas R, Badkillaya RR, Nagasampige MK, Yelnadu M, Pawar H, Hebbar P, Kashyap MK. ESCC ATLAS: A population wide compendium of biomarkers for Esophageal Squamous Cell Carcinoma. Sci Rep 2018; 8:12715. [PMID: 30143675 PMCID: PMC6109081 DOI: 10.1038/s41598-018-30579-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.
Collapse
Affiliation(s)
- Asna Tungekar
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Sumana Mandarthi
- Mbiomics, Manipal, Karnataka, India
- Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal, Karnataka, India
| | - Pooja Rajendra Mandaviya
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Veerendra P Gadekar
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria
| | - Ananthajith Tantry
- Mbiomics, Manipal, Karnataka, India
- Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
| | - Sowmya Kotian
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | - Jyotshna Reddy
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Sushma Bhat
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
| | | | - Roshan Mascarenhas
- Mbiomics, Manipal, Karnataka, India
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India
- Newcastle University Medicine Malaysia, Johor Bahru, 79200, Malaysia
| | - Raghavendra Rao Badkillaya
- Mbiomics, Manipal, Karnataka, India
- Department of Biotechnology, Alva's college, Moodubidre, Karnataka, India
| | - Manoj Kumar Nagasampige
- Mbiomics, Manipal, Karnataka, India
- Department of Biotechnology, Sikkim Manipal University, Gangtok, Sikkim, 737102, India
| | - Mohan Yelnadu
- Mbiomics, Manipal, Karnataka, India
- Manipal Center for Information Sciences, Manipal University, Manipal, Karnataka, India
- Infosys Technologies Ltd, Bangalore, Karnataka, India
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Harsh Pawar
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Prashantha Hebbar
- Mbiomics, Manipal, Karnataka, India.
- Manipal Life Sciences Center, Manipal University, Manipal, Karnataka, India.
| | - Manoj Kumar Kashyap
- Mbiomics, Manipal, Karnataka, India.
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India.
- School of Life and Allied Health Sciences, Glocal University, Saharanpur, Uttar Pradesh, 247001, India.
- Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
20
|
Chang SN, Lee JM, Oh H, Kim U, Ryu B, Park JH. Troglitazone inhibits the migration and invasion of PC-3 human prostate cancer cells by upregulating E-cadherin and glutathione peroxidase 3. Oncol Lett 2018; 16:5482-5488. [PMID: 30250621 DOI: 10.3892/ol.2018.9278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Troglitazone (TGZ) is a synthetic peroxisome proliferator-activated receptor γ (PPARγ) ligand that exhibits potential antitumor effects on a number of cancer subtypes, including prostate cancer. However, little is known about the effect of TGZ on metastasis in prostate cancer. The aim of the present study was to determine the inhibitory effect and mechanism underlying TGZ on cell growth, migration and invasion using the prostate cancer PC-3 cell line. Cellular migration and invasion were evaluated by performing a wound healing assay and Matrigel assay, respectively. The expression levels of mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that TGZ dose-dependently inhibited cell migration and invasion of PC-3 cells. The present study also revealed that TGZ increased the mRNA and protein levels of E-cadherin and glutathione peroxidase 3 (GPx3) in human prostate cancer PC-3 cells. In addition, GW9662, a PPARγ antagonist, attenuated the increased mRNA and protein levels of E-cadherin and GPx3, suggesting that the PPARγ-dependent signaling pathway was involved. Taken together, these results suggested that the anti-migration and anti-invasion effect of TGZ on PC-3 prostate cancer cells is, at least in part, mediated via upregulation of E-cadherin and GPx3. The present study also concluded that PPARγ may be used as a potential remedial target for the prevention and treatment of prostate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
21
|
Khaled ML, Bykhovskaya Y, Yablonski SER, Li H, Drewry MD, Aboobakar IF, Estes A, Gao XR, Stamer WD, Xu H, Allingham RR, Hauser MA, Rabinowitz YS, Liu Y. Differential Expression of Coding and Long Noncoding RNAs in Keratoconus-Affected Corneas. Invest Ophthalmol Vis Sci 2018; 59:2717-2728. [PMID: 29860458 PMCID: PMC5984031 DOI: 10.1167/iovs.18-24267] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose Keratoconus (KC) is the most common corneal ectasia. We aimed to determine the differential expression of coding and long noncoding RNAs (lncRNAs) in human corneas affected with KC. Methods From the corneas of 10 KC patients and 8 non-KC healthy controls, 200 ng total RNA was used to prepare sequencing libraries with the SMARTer Stranded RNA-Seq kit after ribosomal RNA depletion, followed by paired-end 50-bp sequencing with Illumina Sequencer. Differential analysis was done using TopHat/Cufflinks with a gene file from Ensembl and a lncRNA file from NONCODE. Pathway analysis was performed using WebGestalt. Using the expression level of differentially expressed coding and noncoding RNAs in each sample, we correlated their expression levels in KC and controls separately and identified significantly different correlations in KC against controls followed by visualization using Cytoscape. Results Using |fold change| ≥ 2 and a false discovery rate ≤ 0.05, we identified 436 coding RNAs and 584 lncRNAs with differential expression in the KC-affected corneas. Pathway analysis indicated the enrichment of genes involved in extracellular matrix, protein binding, glycosaminoglycan binding, and cell migration. Our correlation analysis identified 296 pairs of significant KC-specific correlations containing 117 coding genes enriched in functions related to cell migration/motility, extracellular space, cytokine response, and cell adhesion. Our study highlighted the potential roles of several genes (CTGF, SFRP1, AQP5, lnc-WNT4-2:1, and lnc-ALDH3A2-2:1) and pathways (TGF-β, WNT signaling, and PI3K/AKT pathways) in KC pathogenesis. Conclusions Our RNA-Seq-based differential expression and correlation analyses have identified many potential KC contributing coding and noncoding RNAs.
Collapse
Affiliation(s)
- Mariam Lofty Khaled
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Yelena Bykhovskaya
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sarah E. R. Yablonski
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
- STAR Program, Augusta University, Augusta, Georgia, United States
| | - Hanzhou Li
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Michelle D. Drewry
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Inas F. Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Amy Estes
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| | - X. Raymond Gao
- Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, Illinois, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States
| | - R. Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
| | - Michael A. Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States
| | - Yaron S. Rabinowitz
- Regenerative Medicine Institute and Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
22
|
CRISPR-Mediated Reactivation of DKK3 Expression Attenuates TGF-β Signaling in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10060165. [PMID: 29843383 PMCID: PMC6025141 DOI: 10.3390/cancers10060165] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
The DKK3 gene encodes a secreted protein, Dkk-3, that inhibits prostate tumor growth and metastasis. DKK3 is downregulated by promoter methylation in many types of cancer, including prostate cancer. Gene silencing studies have shown that Dkk-3 maintains normal prostate epithelial cell homeostasis by limiting TGF-β/Smad signaling. While ectopic expression of Dkk-3 leads to prostate cancer cell apoptosis, it is unclear if Dkk-3 has a physiological role in cancer cells. Here, we show that treatment of PC3 prostate cancer cells with the DNA methyltransferase (DNMT) inhibitor decitabine demethylates the DKK3 promoter, induces DKK3 expression, and inhibits TGF-β/Smad-dependent transcriptional activity. Direct induction of DKK3 expression using CRISPR-dCas9-VPR also inhibited TGF-β/Smad-dependent transcription and attenuated PC3 cell migration and proliferation. These effects were not observed in C4-2B cells, which do not respond to TGF-β. TGF-β signals can regulate gene expression directly via SMAD proteins and indirectly by increasing DNMT expression, leading to promoter methylation. Analysis of genes downregulated by promoter methylation and predicted to be regulated by TGF-β found that DKK3 induction increased expression of PTGS2, which encodes cyclooxygenase-2. Together, these observations provide support for using CRISPR-mediated induction of DKK3 as a potential therapeutic approach for prostate cancer and highlight complexities in Dkk-3 regulation of TGF-β signaling.
Collapse
|
23
|
Coutinho-Camillo CM, Miracca EC, dos Santos ML, Salaorni S, Sarkis AS, Nagai MA. Identification of Differentially Expressed Genes in Prostatic Epithelium in Relation to Androgen Receptor CAG Repeat Length. Int J Biol Markers 2018; 21:96-105. [PMID: 16847812 DOI: 10.1177/172460080602100205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The CAG repeat within exon 1 of the androgen receptor (AR) has been associated with the development of prostate cancer. The shorter number of glutamine residues in the protein has been associated with a higher transcriptional activity of the AR and increased relative risk for prostate cancer. In an attempt to identify differentially expressed genes in prostate cancer in relation to AR CAG repeat length variation, in this study we used total mRNA from normal and tumor tissues from 2 prostate cancer patients with AR alleles containing 19 and 26 CAG repeats to perform differential-display RT-PCR analysis. We were able to identify 48 different transcripts that showed homology to several known genes associated with different biological pathways. Among the differentially expressed genes, ATRX and SFRP1 were further validated by quantitative RT-PCR. The transcripts of both ATRX and SFRP1 genes proved to be down-regulated in most of the prostate tumors analyzed by quantitative RT-PCR. Hypermethylation of the promoter region of the SFRP1 gene was found in 17.5% (7/40) of the cases analyzed and was associated with the loss of SFRP1 expression (p=0.014). The differentially expressed genes identified in this study are implicated in several cellular pathways that, when up- or down-regulated, might play a role in the tumorigenic process of the prostate.
Collapse
Affiliation(s)
- C M Coutinho-Camillo
- Laboratório de Genética Molecular do Câncer, Disciplina de Oncologia, Departamento de Radiologia, FMUSP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Danziger O, Shai B, Sabo Y, Bacharach E, Ehrlich M. Combined genetic and epigenetic interferences with interferon signaling expose prostate cancer cells to viral infection. Oncotarget 2018; 7:52115-52134. [PMID: 27366948 PMCID: PMC5239539 DOI: 10.18632/oncotarget.10313] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022] Open
Abstract
Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben Shai
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Sabo
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Ehrlich
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Ryuno H, Naguro I, Kamiyama M. ASK family and cancer. Adv Biol Regul 2017; 66:72-84. [PMID: 28552579 DOI: 10.1016/j.jbior.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Cancer is a major problem in public health and is one of the leading causes of mortality worldwide. Many types of cancer cells exhibit aberrant cellular signal transduction in response to stress, which often leads to oncogenesis. Mitogen-activated protein kinase (MAPK) signal cascades are one of the important intracellular stress signaling pathways closely related to cancer. The key molecules in MAPK signal cascades that respond to various types of stressors are apoptosis signal-regulating kinase (ASK) family members; ASK1, ASK2 and ASK3. ASK family members are activated by a wide variety of stressors, and they regulate various cellular responses, such as cell proliferation, inflammation and apoptosis. In this review, we will discuss both the oncogenic and anti-oncogenic roles of the ASK family members in various contexts of cancer development with deeper insights into the involvement of ASK family members in cancer pathology.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Kamiyama
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
26
|
Aging: a portrait from gene expression profile in blood cells. Aging (Albany NY) 2017; 8:1802-21. [PMID: 27545843 PMCID: PMC5032697 DOI: 10.18632/aging.101016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/07/2016] [Indexed: 01/27/2023]
Abstract
The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.
Collapse
|
27
|
Angulo JC, López JI, Ropero S. DNA Methylation and Urological Cancer, a Step Towards Personalized Medicine: Current and Future Prospects. Mol Diagn Ther 2017; 20:531-549. [PMID: 27501813 DOI: 10.1007/s40291-016-0231-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Urologic malignancies are some of the commonest tumors often curable when diagnosed at early stage. However, accurate diagnostic markers and faithful predictors of prognosis are needed to avoid over-diagnosis leading to overtreatment. Many promising exploratory studies have identified epigenetic markers in urinary malignancies based on DNA methylation, histone modification and non-coding ribonucleic acid (ncRNA) expression that epigenetically regulate gene expression. We review and discuss the current state of development and the future potential of epigenetic biomarkers for more accurate and less invasive detection of urological cancer, tumor recurrence and progression of disease serving to establish diagnosis and monitor treatment efficacies. The specific clinical implications of such methylation tests on therapeutic decisions and patient outcome and current limitations are also discussed.
Collapse
Affiliation(s)
- Javier C Angulo
- Servicio de Urología, Hospital Universitario de Getafe, Departamento Clínico, Facultad de Ciencias Biomédicas, Universidad Europea de Madrid, Laureate Universities, Hospital Universitario de Getafe, Carretera de Toledo Km 12.5, Getafe, 28905, Madrid, Spain.
| | - Jose I López
- Servicio de Anatomía Patológica, Hospital Universitario de Cruces, Instituto BioCruces,Universidad del País Vasco (UPV-EHU), Bilbao, Spain
| | - Santiago Ropero
- Departamento de Biología de Sistemas, Unidad Docente de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
28
|
Zhang L, Sun C, Jin Y, Gao K, Shi X, Qiu W, Ma C, Zhang L. Dickkopf 3 (Dkk3) Improves Amyloid-β Pathology, Cognitive Dysfunction, and Cerebral Glucose Metabolism in a Transgenic Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 60:733-746. [DOI: 10.3233/jad-161254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Li Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caixian Sun
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Yaxi Jin
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Kai Gao
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Xudong Shi
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Wenying Qiu
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Abstract
Chemopreventive activity of selenium (Se) may influence epigenome. In this review, we have discussed two aspects of Se and epigenetics in cancer, related to (1) the association between Se and epigenetic regulation in cancer development and prevention; (2) epigenetic modification of selenoprotein-encoding genes in different cancers. In both issues, we focused on DNA methylation as the most investigated epigenetic mechanism. The existing evidence from experimental data in human cancer cell lines, rodents, and human studies in cancer-free subjects indicates that: high Se exposure leads to the inhibition of DNA methyltransferase expression/activity; the association between Se and global methylation remains unclear and requires further investigation with respect to the underlying mechanisms and possible nonlinear character of this relationship; Se affects methylation of specific tumor suppressor genes, possibly in a sex-dependent manner; and cancer phenotype is often characterized by altered methylation of selenoprotein-encoding genes, mainly glutathione peroxidase 3.
Collapse
Affiliation(s)
- Ewa Jabłońska
- Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
30
|
Busceti CL, Marchitti S, Bianchi F, Di Pietro P, Riozzi B, Stanzione R, Cannella M, Battaglia G, Bruno V, Volpe M, Fornai F, Nicoletti F, Rubattu S. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway. Front Pharmacol 2017; 8:111. [PMID: 28352232 PMCID: PMC5348502 DOI: 10.3389/fphar.2017.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/22/2017] [Indexed: 11/13/2022] Open
Abstract
Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs.
Collapse
Affiliation(s)
- Carla L Busceti
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Simona Marchitti
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Franca Bianchi
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Paola Di Pietro
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Barbara Riozzi
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Rosita Stanzione
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | - Milena Cannella
- IRCCS NEUROMED - Istituto Neurologico Mediterraneo Pozzilli, Italy
| | | | - Valeria Bruno
- IRCCS NEUROMED - Istituto Neurologico MediterraneoPozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| | - Massimo Volpe
- IRCCS NEUROMED - Istituto Neurologico MediterraneoPozzilli, Italy; Department of Clinical and Molecular Medicine, Sapienza University of RomeRome, Italy
| | - Francesco Fornai
- IRCCS NEUROMED - Istituto Neurologico MediterraneoPozzilli, Italy; Department of Human Morphology and Applied Biology, University of PisaPisa, Italy
| | - Ferdinando Nicoletti
- IRCCS NEUROMED - Istituto Neurologico MediterraneoPozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University of RomeRome, Italy
| | - Speranza Rubattu
- IRCCS NEUROMED - Istituto Neurologico MediterraneoPozzilli, Italy; Department of Clinical and Molecular Medicine, Sapienza University of RomeRome, Italy
| |
Collapse
|
31
|
Cheng JY, Brown TC, Murtha TD, Stenman A, Juhlin CC, Larsson C, Healy JM, Prasad ML, Knoefel WT, Krieg A, Scholl UI, Korah R, Carling T. A novel FOXO1-mediated dedifferentiation blocking role for DKK3 in adrenocortical carcinogenesis. BMC Cancer 2017; 17:164. [PMID: 28249601 PMCID: PMC5333434 DOI: 10.1186/s12885-017-3152-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 02/22/2017] [Indexed: 11/17/2022] Open
Abstract
Background Dysregulated WNT signaling dominates adrenocortical malignancies. This study investigates whether silencing of the WNT negative regulator DKK3 (Dickkopf-related protein 3), an implicated adrenocortical differentiation marker and an established tumor suppressor in multiple cancers, allows dedifferentiation of the adrenal cortex. Methods We analyzed the expression and regulation of DKK3 in human adrenocortical carcinoma (ACC) by qRT-PCR, immunofluorescence, promoter methylation assay, and copy number analysis. We also conducted functional studies on ACC cell lines, NCI-H295R and SW-13, using siRNAs and enforced DKK3 expression to test DKK3’s role in blocking dedifferentiation of adrenal cortex. Results While robust expression was observed in normal adrenal cortex, DKK3 was down-regulated in the majority (>75%) of adrenocortical carcinomas (ACC) tested. Both genetic (gene copy loss) and epigenetic (promoter methylation) events were found to play significant roles in DKK3 down-regulation in ACCs. While NCI-H295R cells harboring β-catenin activating mutations failed to respond to DKK3 silencing, SW-13 cells showed increased motility and reduced clonal growth. Conversely, exogenously added DKK3 also increased motility of SW-13 cells without influencing their growth. Enforced over-expression of DKK3 in SW-13 cells resulted in slower cell growth by an extension of G1 phase, promoted survival of microcolonies, and resulted in significant impairment of migratory and invasive behaviors, largely attributable to modified cell adhesions and adhesion kinetics. DKK3-over-expressing cells also showed increased expression of Forkhead Box Protein O1 (FOXO1) transcription factor, RNAi silencing of which partially restored the migratory proficiency of cells without interfering with their viability. Conclusions DKK3 suppression observed in ACCs and the effects of manipulation of DKK3 expression in ACC cell lines suggest a FOXO1-mediated differentiation-promoting role for DKK3 in the adrenal cortex, silencing of which may allow adrenocortical dedifferentiation and malignancy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3152-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce Y Cheng
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor C Brown
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Timothy D Murtha
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - Catharina Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, CCK, Stockholm, Sweden
| | - James M Healy
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Manju L Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wolfram T Knoefel
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andreas Krieg
- Department of Surgery, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ute I Scholl
- Department of Nephrology, Medical School, Heinrich Heine University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Reju Korah
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA
| | - Tobias Carling
- Department of Surgery & Yale Endocrine Neoplasia Laboratory, Yale University School of Medicine, New Haven, CT, USA. .,Department of Surgery, Yale University School of Medicine, 333 Cedar Street, FMB130A, New Haven, CT, 06520, USA.
| |
Collapse
|
32
|
Zhang X, Du Y, Ling J, Li W, Liao Y, Wei X. Dickkopf-related protein 3 negatively regulates the osteogenic differentiation of rat dental follicle cells. Mol Med Rep 2017; 15:1673-1681. [PMID: 28259940 PMCID: PMC5364975 DOI: 10.3892/mmr.2017.6165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/15/2016] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the effect of Dickkopf-related protein 3 (DKK3) on osteogenic differentiation of rat dental follicle cells (DFCs). A PCR array analysis of Wnt pathway activation in DFCs identified genes dysregulated by mineral induction. Among them, DKK3expression levels were decreased, and further experiments were conducted to investigate its role in DFC osteogenesis. By comparing DFCs grown in normal growth and mineral-induction media for 4 weeks, the present study confirmed that DKK3 was a potential target gene of osteogenesis through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). A short hairpin RNA (shRNA) was introduced into DFCs using a lentiviral vector to inhibit DKK3 expression. An alkaline phosphatase (ALP) activity assay and Alizarin Red staining were performed to observe the DKK3-shRNA DFCs. In addition, the osteogenic differentiation of DKK3-shRNA DFCs was analyzed by RT-qPCR and WB. In vivo, DKK3-shRNA DFCs seeded on hydroxyapatite/β-tricalcium phosphate (HA/TCP) scaffolds were transplanted into the subcutaneous tissue of mice with severe combined immunodeficiency, followed by hematoxylin-eosin and Masson staining. The results confirmed that DKK3 expression was downregulated during mineral induction in rat DFCs. Lentivirus-mediated expression of DKK3 shRNA in DFCs promoted calcified-nodule formation, ALP activity and the expression of β-catenin, runt-related transcription factor 2 and osteocalcin, compared with control cells. In vivo, the implanted section presented the majority of newly formed osteoid matrices and collagen, with limited space between the HA/TCP scaffolds and matrices. In conclusion, DKK3 expression negatively regulates the osteogenic differentiation of DFCs and, conversely, downregulation of DKK3 may enhance DFC osteogenesis.
Collapse
Affiliation(s)
- Xinchun Zhang
- Department of Prosthodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu Du
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Liao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
33
|
Chang SN, Lee JM, Oh H, Park JH. Glutathione Peroxidase 3 Inhibits Prostate Tumorigenesis in TRAMP Mice. Prostate 2016; 76:1387-98. [PMID: 27325372 DOI: 10.1002/pros.23223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glutathione peroxidase 3 (GPx3) is involved in protecting cells from oxidative damage, and down-regulated levels of expression have been found in prostate cancer samples. We hypothesize that loss of the GPx3 increases the rate of prostate carcinogenesis and generated GPx3-deficient transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. METHODS Prostate cancer incidence and progression were determined in TRAMP, TRAMP/GPx3 (+/-) HET, and TRAMP/GPx3 (-/-) KO mice at 8, 16, and 20 weeks of age. RESULTS We found that GPx3 expression was decreased in TRAMP mice and not detected in GPx3 KO mice both in mRNA and protein levels. Disruption of GPx3 expression in TRAMP mice increased the GU tract weights and the histopathological scores in each lobes with increased proliferation rates. Moreover, inactivation of one (+/-) or both (-/-) alleles of GPx3 resulted in increase in prostate cancer incidence with activated Wnt/β-catenin pathway. CONCLUSIONS Our results provide the first in vivo molecular genetic evidence that GPx3 does indeed function as a tumor suppressor during prostate carcinogenesis. Prostate 76:1387-1398, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Fabijanovic D, Zunic I, Martic TN, Skenderi F, Serman L, Vranic S. The expression of SFRP1, SFRP3, DVL1, and DVL2 proteins in testicular germ cell tumors. APMIS 2016; 124:942-949. [PMID: 27599467 DOI: 10.1111/apm.12588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Germ cell tumors of the testis are a heterogeneous group of neoplasms that affect male adolescents and young adults. Wnt signaling pathway components have been shown to be actively involved in normal and malignant germ cell differentiation and progression. In this study, we aimed to explore the expression patterns of the secreted frizzled-related protein (SFRP) and Disheveled protein family (DVL) in a subset of testicular germ cell tumors. Eighty-five formalin-fixed, paraffin-embedded tissue samples of the primary germ cell tumors of the testis were stained against SFRP1, SFRP3, DVL1, and DVL2 proteins using immunohistochemistry. SFRP1 and SFRP3 exhibited lower expression in both seminomas and mixed/non-seminomatous tumors, compared with atrophic/benign tissue (p < 0.001). SFRP3 expression was lower than SFRP1 expression within the seminoma group (p = 0.004), but not within the mixed/non-seminomatous group (p = 0.409). The majority of the tested cases (27/28, 96%) exhibited low DVL1 protein expression (median 0%, range 0-90%). In contrast, 20 out of 22 tested cases (91%) exhibited strong expression of DVL2 protein (median 80%, range 0-100%). No significant difference in DVL1 and DVL2 protein expression was observed between seminomas and mixed/non-seminomatous tumors (p = 0.68 and 0.29). The secreted frizzled-related protein and disheveled protein family members appear to be actively involved in the pathogenesis of primary testicular germ cell tumors.
Collapse
Affiliation(s)
- Dora Fabijanovic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iris Zunic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Faruk Skenderi
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Semir Vranic
- Department of Pathology, University Clinical Center Sarajevo, Sarajevo, Bosnia and Herzegovina.,School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
35
|
An BC, Jung NK, Park CY, Oh IJ, Choi YD, Park JI, Lee SW. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells. Mol Cells 2016; 39:631-8. [PMID: 27484907 PMCID: PMC4990756 DOI: 10.14348/molcells.2016.0164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 11/27/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells.
Collapse
Affiliation(s)
- Byung Chull An
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Nak-Kyun Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
- Research Institute of Medical Sciences, Chonnam National University, Hwasun 58128,
Korea
| | - Chun Young Park
- Department of Pathology, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Hwasun 58128,
Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61186,
Korea
| | - Seung-won Lee
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128,
Korea
- Research Institute of Medical Sciences, Chonnam National University, Hwasun 58128,
Korea
| |
Collapse
|
36
|
García-Tobilla P, Solórzano SR, Salido-Guadarrama I, González-Covarrubias V, Morales-Montor G, Díaz-Otañez CE, Rodríguez-Dorantes M. SFRP1 repression in prostate cancer is triggered by two different epigenetic mechanisms. Gene 2016; 593:292-301. [PMID: 27570179 DOI: 10.1016/j.gene.2016.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, prostate cancer (PCa) is the second cause of death from malignant tumors among men. Establishment of aberrant epigenetic modifications, such as histone post-translational modifications (PTMs) and DNA methylation (DNAme) produce alterations of gene expression that are common in PCa. Genes of the SFRP family are tumor suppressor genes that are frequently silenced by DNA hypermethylation in many cancer types. The SFRP family is composed of 5 members (SFRP1-5) that modulate the WNT pathway, which is aberrantly activated in PCa. The expression of SFRP genes in PCa and their regulation by DNAme has been controversial. Our objective was to determine the gene expression pattern of the SFRP family in prostatic cell lines and fresh frozen tissues from normal prostates (NP), benign prostatic hyperplasia (BPH) and prostate cancer (PCa), by qRT-PCR, and their DNAme status by MSP and bisulfite sequencing. In prostatic cancer cell lines, the 5 SFRPs showed significantly decreased expression levels compared to a control normal prostatic cell line (p<0.0001). In agreement, SFRP1 and SFRP5 genes showed decreased expression levels in CaP fresh frozen tissues compared to NP (p<0.01), while a similar trend was observed for SFRP2. Conversely, increased levels of SFRP4 expression were found in PCa compared to BPH (p<0.01). Moreover, SFRP2, SFRP3, and SFRP5 showed DNA hypermethylation in PCa cell lines. Interestingly, we observed DNA hypermethylation at the promoter of SFRP1 in the PC3 cell line, but not in LNCaP. However, in the LNCaP cell line we found an aberrant gain of the repressive histone posttranslational modification Histone H3 lysine 27 trimethylation (H3K27me3). In conclusion, decreased expression by DNA hypermethylation of SFRP5 is a common feature of PCa, while decreased expression of SFRP1 can be due to DNA hypermethylation, but sometimes an aberrant gain of the histone mark H3K27me3 is observed instead.
Collapse
Affiliation(s)
- Pilar García-Tobilla
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Susana R Solórzano
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Iván Salido-Guadarrama
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | | | | | | | |
Collapse
|
37
|
Corbin JM, Ruiz-Echevarría MJ. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling. Int J Mol Sci 2016; 17:E1208. [PMID: 27472325 PMCID: PMC5000606 DOI: 10.3390/ijms17081208] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.
Collapse
Affiliation(s)
- Joshua M Corbin
- Department of Pathology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Maria J Ruiz-Echevarría
- Department of Pathology, Oklahoma University Health Sciences Center and Stephenson Cancer Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
38
|
Al-Dhohorah T, Mashrah M, Yao Z, Huang J. Aberrant DKK3 expression in the oral leukoplakia and oral submucous fibrosis: a comparative immunohistochemical study. Eur J Histochem 2016; 60:2629. [PMID: 27349317 PMCID: PMC4933828 DOI: 10.4081/ejh.2016.2629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 11/23/2022] Open
Abstract
We aimed to assess and compare the expression of Dickkopf homolog 3 (DKK3), a possible tumor suppressor gene (TSG), in oral leukoplakia (OLK) and oral submucous fibrosis (OSF) using immunohistochemistry. Seventy-five cases of normal oral mucosa (NOM), OLK, OSF, and squamous cell carcinoma (OSCC) were studied. DKK3 was expressed in all cases of NOM, OLK and OSCC. There was steady increases in the percentage of the positive cells progressing toward OSCC. The expression was localized in the cytoplasm and cell membrane of cell affected by OLK with mild dysplasia and OLK with severe dysplasia. No significant association was observed between DKK3 expression and dysplastic status of OLK. Loss of DKK3 expression was observed in 15 of 30 cases in the OSF group, which was significantly associated with histological grade of OSF (P<0.0001). The percentage of positive cells gradually declined with the increasing severity of epithelial atrophy. A significant difference (P<0.01) was observed when comparing DKK3 expression among different groups of OLK and OSF cases. DKK3 may have diverse expressions in oral premalignant lesions. Loss of DKK3 expression in dysplastic/advanced stage of OSF may imply a high risk of progression to oral cancer.
Collapse
|
39
|
Kim MS, Lee HN, Kim HJ, Myung SC. Single nucleotide polymorphisms in DKK3 gene are associated with prostate cancer risk and progression. Int Braz J Urol 2016; 41:869-97. [PMID: 26689513 PMCID: PMC4756964 DOI: 10.1590/s1677-5538.ibju.2014.0041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022] Open
Abstract
We had investigated whether sequence variants within DKK3 gene are associated with the development of prostate cancer in a Korean study cohort. We evaluated the association between 53 single nucleotide polymorphisms (SNPs) in the DKK3 gene and prostate cancer risk as well as clinical characteristics (PSA, clinical stage, pathological stage and Gleason score) in Korean men (272 prostate cancer subjects and 173 benign prostate hyperplasia subjects) using unconditional logistic regression analysis. Of the 53 SNPs and 25 common haplotypes, 5 SNPs and 4 haplotypes were associated with prostate cancer risk (P=0.02-0.04); 3 SNPs and 2 haplotypes were significantly associated with susceptibility to prostate cancer, however 2 SNPs and 2 haplotypes exhibited a significant protective effect on prostate cancer. Logistic analyses of the DKK3 gene polymorphisms with several prostate cancer related factors showed that several SNPs were significant; three SNPs and two haplotypes to PSA level, three SNPs and two haplotypes to clinical stage, nine SNPs and two haplotype to pathological stage, one SNP and one haplotypes to Gleason score. To the author's knowledge, this is the first report documenting that DKK3 polymorphisms are not only associated with prostate cancer but also related to prostate cancer-related factors.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Urology, Seoul Medical Center, Seoul, Korea
| | - Ha Na Lee
- Department of Urology, Seoul Seonam Hospital, EwhaWomans University, Seoul, Korea
| | - Hae Jong Kim
- Research Institue for Biomedical and Pharmaceutical Sciences, Chung-Ang University, Seoul, Korea.,Advanced Urogenital Diseas Research Center, Chung-Ang University, College of Medicine, Seoul, Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University, College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Trevino V, Cassese A, Nagy Z, Zhuang X, Herbert J, Antzack P, Clarke K, Davies N, Rahman A, Campbell MJ, Guindani M, Bicknell R, Vannucci M, Falciani F. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells. PLoS Comput Biol 2016; 12:e1004884. [PMID: 27124473 PMCID: PMC4849722 DOI: 10.1371/journal.pcbi.1004884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems. In the current era of cancer research, stimulated by the release of the entire human genome, it has become increasingly clear that to understand cancer we need to understand how the many thousands of genes and proteins involved interact. Modern techniques have enabled the collection of unprecedented amounts of high quality data describing the state of these molecules during cancer development. In cancer research particularly, this strategy has been particularly successful, leading to the discovery of new drugs able to target key factors promoting cancer growth. However, a large body of research suggests that in complex organs, the interaction between cancer and its surrounding environment is an essential part of the biology of both diseased and healthy tissues, therefore it is of paramount importance that this process is further investigated. Here we report a strategy designed to reveal communication signals between cancer cells and adjacent cell types. We apply the strategy to prostate cancer and find that normal cells surrounding the tumour do exert an anti-tumour activity on prostate cancer cells. By using a statistical model which integrates multiple levels of genetic data, we show that cell-to-cell communication genes are controlled by DNA alterations and have potential prognostic value.
Collapse
Affiliation(s)
- Victor Trevino
- Catedra de Bioinformatica, Escuela de Medicina, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Alberto Cassese
- Department of Methodology and Statistics, Maastricht University, Maastricht, Netherlands
| | - Zsuzsanna Nagy
- School of Experimental and Clinical Medicine, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xiaodong Zhuang
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John Herbert
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philipp Antzack
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Kim Clarke
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nicholas Davies
- School of Cancer Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ayesha Rahman
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Moray J. Campbell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michele Guindani
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Roy Bicknell
- School of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Marina Vannucci
- Department of Statistics, Rice University, Houston, Texas, United States of America
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Kontos CK, Adamopoulos PG, Scorilas A. Prognostic and predictive biomarkers in prostate cancer. Expert Rev Mol Diagn 2015; 15:1567-76. [PMID: 26548550 DOI: 10.1586/14737159.2015.1110022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer death among males, especially in more developed countries. Diagnosis is often achieved at an early stage of the disease with prostate biopsy, following a screening test showing elevated serum levels of prostate-specific antigen or a positive digital rectal examination. Early detection of PCa has led to a substantial decline in the number of metastatic patients. However, the prostate-specific antigen screening test has proved to be a double-edged sword so far, as it also accounts for PCa overdiagnosis. Due to the variability of PCa features, accurate prognosis of PCa patients is very important for determining treatment options. Therefore, this review focuses on the most promising prognostic and predictive biomarkers in PCa, which are likely to play a pivotal role, alone or in panels, in the personalized medicine era that has recently emerged.
Collapse
Affiliation(s)
- Christos K Kontos
- a Department of Biochemistry and Molecular Biology , University of Athens , Athens , Greece
| | | | - Andreas Scorilas
- a Department of Biochemistry and Molecular Biology , University of Athens , Athens , Greece
| |
Collapse
|
42
|
Romero D, Al-Shareef Z, Gorroño-Etxebarria I, Atkins S, Turrell F, Chhetri J, Bengoa-Vergniory N, Zenzmaier C, Berger P, Waxman J, Kypta R. Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis 2015; 37:18-29. [DOI: 10.1093/carcin/bgv153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
|
43
|
Epigenetic regulations of inflammatory cyclooxygenase-derived prostanoids: molecular basis and pathophysiological consequences. Mediators Inflamm 2015; 2015:841097. [PMID: 25944989 PMCID: PMC4402557 DOI: 10.1155/2015/841097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/29/2015] [Indexed: 12/21/2022] Open
Abstract
The potential relevance of prostanoid signaling in immunity and immunological disorders, or disease susceptibility and individual variations in drug responses, is an important area for investigation. The deregulation of Cyclooxygenase- (COX-) derived prostanoids has been reported in several immunoinflammatory disorders such as asthma, rheumatoid arthritis, cancer, and autoimmune diseases. In addition to the environmental factors and the genetic background to diseases, epigenetic mechanisms involved in the fine regulation of prostanoid biosynthesis and/or receptor signaling appeared to be an additional level of complexity in the understanding of prostanoid biology and crucial in controlling the different components of the COX pathways. Epigenetic alterations targeting inflammatory components of prostanoid biosynthesis and signaling pathways may be important in the process of neoplasia, depending on the tissue microenvironment and target genes. Here, we focused on the epigenetic modifications of inflammatory prostanoids in physiological immune response and immunological disorders. We described how major prostanoids and their receptors can be functionally regulated epigenetically and consequently the impact of these processes in the pathogenesis inflammatory diseases and the development of therapeutic approaches that may have important clinical applications.
Collapse
|
44
|
Abstract
Malignancies of the genitourinary system have some of the highest cancer incidence and mortality rates. For example prostate cancer is the second most common cancer in men and ovarian cancer mortality and incidence are near equal. In addition to genetic changes modulation of the epigenome is critical to cancer development and progression. In this regard epigenetic changes in DNA methylation state and DNA hypermethylation in particular has garnered a great deal of attention. While hypomethylation occurs mostly in repeated sequence such as tandem and interspersed repeats and segment duplications, hypermethylation is associated with CpG islands. Hypomethylation leads to activation of cancer-causing genes with global DNA hypomethylation being commonly associated with metastatic disease. Hypermethylation-mediated silencing of tumor suppressive genes is commonly associated with cancer development. Bioactive phytochemicals such as flavonoids present in fruits, vegetables, beverages etc. have the ability to modulate DNA methylation status and are therefore very valuable agents for cancer prevention. In this review we discuss several commonly methylated genes and flavonoids used to modulate DNA methylation in the prevention of genitourinary cancers.
Collapse
|
45
|
Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell PJ, Wullich B, Stöckle M, Lehmann J, Petsch S, Hartmann A, Stoehr R. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol 2015; 141:1779-90. [DOI: 10.1007/s00432-015-1942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/16/2015] [Indexed: 12/13/2022]
|
46
|
Ayub SG, Kaul D, Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet 2015; 208:289-302. [PMID: 26004033 DOI: 10.1016/j.cancergen.2015.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/16/2015] [Accepted: 02/21/2015] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are naturally occurring, small, non-coding RNA molecules that post-transcriptionally regulate the expression of a large number of genes involved in various biological processes, either through mRNA degradation or through translation inhibition. Since the discovery of miRNAs, a vast amount of research has implicated the deregulated expression of miRNAs in different malignancies, including prostate cancer (PCa). Different miRNA expression profiles are reportedly associated with the development, progression, and emergence of castration-resistant PCa (CRPC), suggesting their use in the diagnosis, prognosis, and development of anti-cancer treatment models directed against this disease. However, before their exploitation in terms of therapeutics, a thorough understanding and in-depth mechanistic studies of these miRNAs and the gene networks they orchestrate are necessary for ascertaining their definitive role in the development and progression of PCa. This review attempts to extensively summarize the current knowledge of aberrantly expressed miRNAs and their mode of action in PCa, while highlighting the existing discrepancies and future research warranted.
Collapse
Affiliation(s)
- Shiekh Gazalla Ayub
- Department of Experimental Medicine and Biotechnology, Post-Graduate Institute of Medical Sciences and Research, Chandigarh, India.
| | - Deepak Kaul
- Department of Experimental Medicine and Biotechnology, Post-Graduate Institute of Medical Sciences and Research, Chandigarh, India
| | - Taha Ayub
- Department of Social and Preventive Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
47
|
Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS One 2015; 10:e0118276. [PMID: 25719802 PMCID: PMC4342152 DOI: 10.1371/journal.pone.0118276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
Growing genetic and molecular biological evidence suggests that the disruption of balance between Secreted Frizzled-Related Protein-1 (SFRP1) and β-catenin plays an important role in the initiation and development of multiple cancers. The aim of this study was to examine whether the expression of SFRP1 and β-catenin is associated with the clinical-pathologic features of patients with prostate cancer (PCa), and to evaluate their potential roles as predictive and prognostic biomarkers. In this study, a total of 61 patients with PCa and 10 patients with benign prostatic hyperplasia were included, and we showed that the expression of SFRP1 and β-catenin was correlated with the Gleason score, survival rate and response for endocrine therapy of PCa. The survival rates of PCa patients with low SFRP1 expression (P = 0.016) or high β-catenin expression (P = 0.004) were significantly poorer. A negative correlation (r = -0.275, P = 0.032) between SFRP1 and β-catenin was observed by Chi-square test. Multivariate analysis suggested that SFRP1 (hazard ratio, 0.429; 95% confidence intervals, 0.227–0.812; P = 0.009) may serve as an independent predictive and prognostic factor for PCa. We also showed that the protein and mRNA levels of SFRP1 in androgen-dependent PCa cell line LNCaP were significantly higher than those in androgen-independent PCa cell lines DU145 and PC3. However, the protein level of β-catenin in LNCaP cells was significantly lower than that in DU145 and PC3 cells, and no significant difference of β-catenin mRNA level was observed in LNCaP, DU145 and PC3 cells. Bisulfite sequencing PCR assay revealed significantly lower methylation level of SFRP1 promoter in LNCaP cells than that in DU145 and PC3 cells. Taken together, these findings suggest that SFRP1, which expression inversely correlates with that of β-catenin, is a favorable predictive and prognostic biomarker.
Collapse
|
48
|
Wang L, Huang H, Dougherty G, Zhao Y, Hossain A, Kocher JPA. Epidaurus: aggregation and integration analysis of prostate cancer epigenome. Nucleic Acids Res 2015; 43:e7. [PMID: 25378314 PMCID: PMC4333365 DOI: 10.1093/nar/gku1079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 01/27/2023] Open
Abstract
Integrative analyses of epigenetic data promise a deeper understanding of the epigenome. Epidaurus is a bioinformatics tool used to effectively reveal inter-dataset relevance and differences through data aggregation, integration and visualization. In this study, we demonstrated the utility of Epidaurus in validating hypotheses and generating novel biological insights. In particular, we described the use of Epidaurus to (i) integrate epigenetic data from prostate cancer cell lines to validate the activation function of EZH2 in castration-resistant prostate cancer and to (ii) study the mechanism of androgen receptor (AR) binding deregulation induced by the knockdown of FOXA1. We found that EZH2's noncanonical activation function was reaffirmed by its association with active histone markers and the lack of association with repressive markers. More importantly, we revealed that the binding of AR was selectively reprogramed to promoter regions, leading to the up-regulation of hundreds of cancer-associated genes including EGFR. The prebuilt epigenetic dataset from commonly used cell lines (LNCaP, VCaP, LNCaP-Abl, MCF7, GM12878, K562, HeLa-S3, A549, HePG2) makes Epidaurus a useful online resource for epigenetic research. As standalone software, Epidaurus is specifically designed to process user customized datasets with both efficiency and convenience.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Gregory Dougherty
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic, MN 55905, USA
| | - Asif Hossain
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
49
|
Kim HR, Lee HN, Lim K, Surh YJ, Na HK. 15-Deoxy-Δ12,14-prostaglandin J2 induces expression of 15-hydroxyprostaglandin dehydrogenase through Elk-1 activation in human breast cancer MDA-MB-231 cells. Mutat Res 2014; 768:6-15. [PMID: 25773924 DOI: 10.1016/j.mrfmmm.2014.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Overproduction of prostaglandin E2 (PGE2) has been reported to be implicated in carcinogenesis. The intracellular level of PGE2 is maintained not only by its biosynthesis, but also by inactivation/degradation. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is the key enzyme that catalyzes the conversion of oncogenic PGE2 to a biologically inactive keto metabolite. In the present study, we demonstrate that 15-deoxy-Δ(12,14)-prostaglandin J2 (15 d-PGJ2), one of the terminal products of cyclooxygenase-2, updregulates the expression and the activity of 15-PGDH in human breast cancer MDA-MB-231 cells. By using deletion constructs of the 15-PGDH promoter, we have found that E-twenty six (Ets) is the most essential determinant for 15-PGDH induction. 15 d-PGJ2 induced phosphorylation of Elk-1, one of Ets transcription factor family members, in the nucleus. Knockdown of Elk-1 abolished the ability of 15 d-PGJ2 to upregulate 15-PGDH expression. Furthermore, 15 d-PGJ2-mediated activation of Elk-1 was found to be dependent on activation of extracellular-signal related kinase (ERK) 1/2. Treatment of U0126, a pharmacological inhibitor of MEK1/2-ERK, abolished phosphorylation and DNA binding of Elk-1 as well as 15-PGDH induction in 15 d-PGJ2-treated MDA-MB-231 cells. Moreover, 15 d-PGJ2 generated reactive oxygen species (ROS), which contribute to the expression of 15-PGDH as well as phosphorylation of ERK1/2 and Elk-1. 15 d-PGJ2 inhibited the migration of MDA-MB-231 cells, which was attenuated by transient transfection with 15-PGDH siRNA. Taken together, these findings suggest that 15 d-PGJ2 induces the expression of 15-PGDH through ROS-mediated activation of ERK1/2 and subsequently Elk-1 in the MDA-MB-231 cells, which may contribute to tumor suppressive activity of this cyclopentenone prostaglandin.
Collapse
Affiliation(s)
- Hye-Rim Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Ha-Na Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Young-Joon Surh
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul 142-732, South Korea.
| |
Collapse
|
50
|
Kim TM, Jung SH, Baek IP, Lee SH, Choi YJ, Lee JY, Chung YJ, Lee SH. Regional biases in mutation screening due to intratumoural heterogeneity of prostate cancer. J Pathol 2014; 233:425-35. [PMID: 24870262 DOI: 10.1002/path.4380] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/19/2022]
Abstract
Intratumoural heterogeneity (ITH) leads to regional biases of the mutational landscape in a single tumour and may influence the single biopsy-based clinical diagnosis and treatment decision. To evaluate the extent of ITH in unifocal prostate cancers (PCAs), we analysed multiple regional biopsies from three PCAs, using whole-exome sequencing, DNA copy number and gene expression profiling analyses. A substantial level of ITH was identified, in that 0-61% and 18-71% of somatic variants were common or private, respectively, within a given cancer. The enhanced mutation detection rate in the combined sequencing dataset across intratumoural biopsies was demonstrated with respect to the total number of mutations identified in a given tumour. Allele frequencies of the mutations were positively correlated with the levels of intratumoural recurrence (private < shared < common), but some common mutations showed low allele frequency, suggesting that not all were clonally fixed. Regional biases in the presentation of a well-known TMPRSS2-ERG fusion was noted in one PCA and the somatic mutation- and copy number-based phylogenetic relationships between intratumoural biopsies were largely concordant. Genes showing intratumoural expression variability were commonly enriched in the molecular function of eicosanoid metabolism and PCA-relevant clinical markers. Taken together, our analyses identified a substantial level of genetic ITH in unifocal PCAs at the mutation, copy number and expression levels, which should be taken into account for the identification of biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Tae-Min Kim
- Cancer Evolution Research Centre, Catholic University of Korea, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|